172

LSl

5
um
2
m

1
T
(4

91 328 |




s:"'. 0L N A A A N A N S S T S e A U S S T T o o T L IR Y O X T PNy
N v

)

S ¥
(]
S e
5". !.'l
"’. '~l
" )
o el
:'m ’:‘.‘:
R ;
’ \
n ]
1.:.' :.,
:'!l'n I:::
o .?

3 N
£ Y
e 1)
LA ’
" »
3, ‘fb Y
Kot -

‘,‘ ;
=
—

I
CrERRE
FEEER

FE.

A = -
e = 3
= s
LS s s

s T A T D AN AN



Ca’, 0" g 0" AT AR AE R L NN T 40 9.4 08 Vol Ul Sad "Bl 600 0.4 taB S8 -

-

i

. e NN RN XN NEXXX 3 Sa8 Srd S04 Bad 18 10 3,8 4100 Wb 5,0 88 60 &0 .;‘;‘:.;::'
. SR
December 19870“(: F".E coe' v . gg_é{.SENG-B 7-2279 @ :"::'

COORDINATED SCIENCE LABORATORY

College of Engincering
DTIC

_ ZLECT
AD-A191 328 Fea2 3 000

“D

PIECEWISE LINEAR APPROACH
FOR TIMING SIMULATION

OF VLSI CIRCUITS

ON SERIAL AND

PARALLEL COMPUTERS

Ongky Tejayadi

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

88 2 28 o012

s " Y L
,
RO
AR X AN
¢ WX AN

-'-’

8, % LN
RS

LA )

e
)
. <
RN AR

oy ,
s T
FORRI]®

;? -_:
o>

’ Ay - e e a7, o 0 IR W WO, W W N A 0N Y GV, WP, .
R T T e 8 e R G R R St W A AR R R GG R Y A



125,42 o 62 a0 §4°

UNCLASSIFIED
ey ECURITY CLASSIFICATION

S 12°, 0% 0% §y0 45! fab fod i .

HIS PA

Sg? 8¢ Bg?

S $a® fat [ORTR

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

Y 12 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

* UILU-ENG-87-2279  (DAC-8)

-y 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if applicable) Semiconductor Research Corporatiom

w, University of Illinois N/A Joint Services Electronics Program

6c. ADDRESS (Gity, State, and ZIP Code)

1101 W. Springfield Avenue
. Urbana, IL 61801

e =

JSEP: Arlington, VA 22

7b. ADDRESS (City, State, and ZIP Code)
SRC: Research Triangle Park, NC 27709

217

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION SRC and JSEP

8b. OFFICE SYMBOL
(if applicable)

SRC: 86-12-109
JSEP: NO0O0014-84-C-0149

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢c. ADDRESS (City, State, and ZIP Code)
See block 7b.

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11 TITLE (include Security Classification)

PARALLEL COMPUTERS

PIECEWISE LINEAR APPROACH FOR TIMING SIMULATION OF VLSI CIRCUITS ON SERIAL AND

12. PERSONAL AUTHOR(S)

Tejayvadi, Ongky

R

partitioning, parallel algorithms, VLSI

i t3a. TYPE OF REPO% (\M 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) NS. PAGE COUNT
Techniecal VY0¥ FROM__ tTO_ December 1987 138
N e
2 16. SUPPLEMENTARY NOTATION
) i
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP timing simulation, piecewise linear techniques, dynamic

L.

~ 1’9 ABSTRACT (Continue on reverse if necessary and identify by block number)

The work presented in this report deals with the development of a fast and fairly accurate
Computer-Aided Design software for simulating very-large-scale-integrated (VLSI) circuits. The
methods rely on piecewise linearized nonlinear elements in the circuits.
approaches explored in this work are: (1) a fast piecewise linear Gauss-Seidel waveform relaxation
method: (2) a slower but more accurate piecewise linear method based on simplices: and (3) a
Gauss-Seidel piecewise linear method with dvnamic partitioning. Also described is a mixed method
. which combines the fast piecewise linear method and the dynamic partitioning method. The circuit
to be analyzed is partitioned into dc-connected subcircuits and then sequenced for analvsis. Small
subcircuits are solved using the fast piecewise linear method while large subcircuits, including the
=~ strongly connected components in the circuit, are solved using the dynamic partitioning method. A
parallel implementation of the Gauss-Seidel piecewise linear method with dynamic partitioning on-

The piecewise linear

20 OiSTRIBUTICN / AVAILABILITY OF ABSTRACT

B unc assiFeomuNUMITED (O SAME AS ReT

CJomnc users

Unclassified

21. ABSTRACT SECURITY CLASSIFICATION

223 NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Ares Code)

22c.

OFFICE SYMBOL

OD FORM 1473, sa Mar

- \J'.;I.;-

N

83 APR edition may be used untii exhausted.
All other editions arg obsolete.

A '-f.:-f'\'f '-’,CH' “_;J' QI' 'V'\'

SECYRITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

o 'u'\'- 'f.;-" Y .l‘;

ot

RN R Ot

R

-~

ol LI 2255

o T gl

[

[

Y MR G L
P )



TR A N O O I SN OY TN Y TR Y DR Y T Y Y R O Y Y O R OO O O o o . ¥ 1% ha g% 0% 0a¥ e by’ 03" g’ Be" Ua' la¥ B bat Nyt 00ty Jhet by’ Ay

>
¥ UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

i

y '

° a uniprocessor computer is studied. Algorithms for the parallel implementation of the dynamic
partitioning approach on a multiprocessor with shared memory (Alliant FX/8) are also explained in
detail. The piecewise linear methods presented in this work have been implemented in a set of pro-

K grams called PLATINUM. The waveforms generated by PLATINUM are fairly accurate as com-

pared to those for SPICE2, and the speedup for a uniprocessor machine is over two orders of magni-

tude, while the parallel implementation gives an additional 4 to 6 times speed improvements.

e B

»
t

e

/
7

[ ¢

[
AN

<

L

e YT

Ll i i

"

: )\.g 'v;i; l'.i :!

a -YI

EACA L
A o

5

o
.

-,'r—’f
s

- " *‘

« R

D]

Y,

-~

N
UNCLASSIFIED ~

SECURITY CLASSIFICATION OF THIS PAGE

et e A A e AT A L U G e e N S
Y e e e o L L e Y e el el O P AL Y 1o 8 P Ve ey g




T s s

P oS

&5

. &

A

AL A

e

PIECEWISE LINEAR APPROACH FOR TIMING SIMULATION
OF VLSI CIRCUITS
ON SERIAL AND PARALLEL COMPUTERS

BY

ONGKY TEJAYADI

B.S., University of Illinois, 1981
M.S., University of Illinois, 1983

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 1988

Urbana. [llinois

’

DTI0
copy
INSCECTED
id

~

A N -
~TCesion ter

|
_

- - l -
NTIS CRA&! d
oL iC TAR W
Uannoraced 0}
Jazhificaton L .
e el LTI
By . . SEUSRRSERNS.
Dot /
AT
[AXZVINTIN - ¥ e ,j
TR
Dt St '
' ] !
A -l ; 1
.o | .
ARG G AN v

.M



R M W M W U S WP WU W D WS W WP WU WU T QNN gt Uat hy ¢ ggd Gab & KIS NICWCFOUCRUUTg Rt et fal ga0 8,0 B0 S b A8 Rt 0,0

ili
X

PIECEWISE LINEAR APPROACH FOR TIMING SIMULATION ot
OF VLSI CIRCUITS .
! ON SERIAL AND PARALLEL COMPUTERS

4

g Ongky Tejayadi, Ph.D. v

Department of Electrical and Computer Engineering {

'3 University of Illinois at Urbana-Champaign, 1988 =

g iy

N 1)

L

I

?;, The work presented in this thesis deals with the development of a fast and N

L] -

fairly accurate Computer Aided Design software for simulating very-large- ’

)

g scale-integrated ( VLSI ) circuits. The methods rely on piecewise linearized ::

L)

o

% nonlinear elements in the circuits. ::
N
2

The piecewise linear approaches explored in this work are 2

- w

:; 1. A fast piecewise linear Gauss-Seidel waveform relaxation method. N

. A slower but more accurate piecewise linear method based on simplices.

§
™)

3. A Gauss-Seidel piecewise linear method with dynamic partitioning.

LT

Also described is a mixed method which combines the fast piecewise linear

.l

" method and the dynamic partitioning method. The circuit 10 be analyzed is par- ‘

titioned into dc-connected subcircuits and then sequenced for analysis. Small '

v a i

:: subcircuits are solved using the fast piecewise linear method while large subcir-
5_3 cuits, including the sirongly-connected components in the circuit. are solved '
Ny h
. using the dynamic partitioning method. :

A\ parallel implemeniation of the Gauss-Seidel piecewise linear method
*, with dynamic partitioning on a uniprocessor computer is studied. Algorithms .
- for the parailel implementation of the dynamic partitioning approach on a mul-

tiprocessor with shared memory (Alliant FX/8) are aiso explained in deta:l. -
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g mented in a set of programs called PLATINUM. The waveforms generated by ?
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3 PLATINUM are fairly accurate as compared to those for SPICE2. and the :::;
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o speedup for a uniprocessor machine is over two orders of magnitude, while the ":-
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" § INTRODUCTION "
i '
I:' ‘G (
R .
' 1
4 (
( Fabrication of integrated circuits is expensive and errors encountered after
M '
. . o
\ o the process is completed cannot be corrected. Therefore, before the circuit is d
A fabricated. it is important to design the circuits as best as possible and then N
R o simulate the operation of the circuits 1o check if the performance matches the .
L) F\ \]
o - specifications. In general. simulation can be divided into classes corresponding :‘,
o ¢
M R , : :
» 't‘:'* to the different levels of the design: :
= , : . '
., .. 1. functional level simulation J
L _." ‘4
’.\ p": :
o 2. register transfer level simulation .
. ‘ 3. logic simuletion
L - o . ‘
S 4. timing simulation t
S A
RN
A 2,
< 5. circuit simulation
N [
. e b. device simulation :
e A
] Uw (3
) . ‘ i
N 7. process simulation ::
.
2\ ::u K
\_‘ . . . . i )
o Although simulation at each of these levels is important for successful *
o ) design. this work is aimed a' developing fast and reliable methocs for circuit b
! K
s o and tuming simulations of large-scale circuits. Before describing the new ]
A, ;
e l‘ .. . o
methods, well-esiablished techniques as well as recently proposed ones are
4 n
] - ) »
.- briedy reviewed below. i’
» - 7
A i . . \ - ) v
I Circuit simuiators. such as SPICE2 [1) and ASTAP [30]. provide accurate .
I results. These siandard circuit simulators basically follow the procedure indi- X
4,
1 -
8 b
\'. :
A P
'. '_ll
. A
¢ N
h\ AN Aty ‘n'.
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cated below : .,:

[T
1. Transform the nonlinear differential-algebraic equations describing the o>
X
%, ¢
dynamic behavior of the circuit into nonlinear algebraic equations :,: ':
" o
using implicit integration methods. )
‘ .

2. Generate linear equations by iteratively applyving the Newton-Raphson A
formula to the nonlinear algebraic equations. . :f-
3. Solve the linear equations at each Newton-Raphson iteration using ) ,’

3

sparse Gaussian elimination techniques. ::; o
N . N oA
More recent circuit simulators apply tearing or partitioning methods to o RS
lower the computation time. Tearing refers to breaking the original system into

subsystems, solving each subsystern separately, and then taking care of the -

interconnections among them. The main advantage of dividing the original net- *

work into subnetworks is that the inactivity or latency of the subcircuits can

be exploited. It has been observed that inactivity or latency in large digital cir-

'o:: 'i.'-'.‘h—;r X '-1 *-,5".-{

cuits accounts for up to 80 percent of the network variables. The numerical

MR WE N YVT N VY 4 Y Y TS VY PV R YSYER SSTTTYEY IR S5O EERReye v Y ¥ T ITEENT U E R VSRR N FTRACTEERRYT YV VR T EEERWEY R FWN W N TR

AT
convergence and stability properties of tearing methods are the same as those of
N \
standard circuit simulators, provided direct methods are used 10 solve the par- PN
-
titione * equations. Ore well-known tearing method is equivalent to reordering ?, '~
<\
S . . \ = AN
the system variables into bordered block diagonal (BBD) form [51] N
S
VAN
D Pjlv y b
= . ”
T A7 AR
Q TlIw s N
k ™ - W
where w € R is the vector of tearing variables and v € R is ‘he vector of the D
N 7..'
rest of the variables, T is a kxk tearing matrix. and D is an m~xm block diagen '
. . . . . - L
matrix. The tearing variables w are solved by eliminating var:ebles v -
o
-
v e
A
f

B R A ey N NN N N e e NN P N
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Then the rest of the variables v are solved :

Dv =y, ~-Pw

where the subscript i indicates the i subcircuit.
One example of a circuit simulator that uses the above tearing method is
SLATE [2]. Due 10 the fact that only a small percentage of the total subnet-
works are active at a particular time. and hence only few subnetworks need 10

be analyzed, this method can provide savings in computation time.

Another way to save computation time is 10 apply a relaxation based solu-
tion method [11). which can also be considered as a form of tearing. An exam-
ple of a circuit simulator that utilizes a relaxation-method is RELAX [11],
which solves the equations at the nonlinear. algebraic-differential equation
level. In RELAX [11]. while solving for unknown variables assigned to each
subsysiem for the time period [r,.7 ], the rest of the unknown variables not
assigned to that particular subsystem are relaxed to waveforms of previous
iterations. The advantage inherent in the waveform relaxation method is that
each subsystem can be solved using its own time step, and thus can expioit
latency in a naturai way. The main disadvantage is that for subsystems with

strong coupling among them the method converges very slowly.

Another way to reduce simulation time is 10 use timing simulators.
switched-level sirnulators [3.10], or timing verifiers [14.15]. Timing simulzators
use methocs similar to those used in circuit simulators, while switched-leve:
simulators and timing ver:fiers use approaches that are compieteiy different.

The speed and accurecy of these sim'uators cover a broad renge: :n general.
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switched-level sirmulators and tuming verifiers are {aster than the crcu:t-
oriented timing simulators: however. switched-level simulators and tming
verifiers are less accurate. Some examples of timing simulators that use
approaches similar to those of circuit simulators are MOTIS [5). MOTIS-C [6] ,
MOTIS 11 [7]. SPLICE [41] and PREMOS [8]. To reduce the computation time at
each ume point a one-sweep Gauss-Jacobi method is used in MOTIS (3] and a
one-sweep Gauss-Seidel approach in MOTIS-C [6] ; i.e.. the iteration is not car-
ried out until convergence. In SPLICE [41] the relaxation method is applied to
the nonlinear difference equations. It is similar to MOTIS-C [6] except that the
iterations are carried out until convergence or until the number of iterations
exceeds some predetermined value. In the latter case the time step is reduced
and the calculation is repeated. The iterations are performed to achieve accu-
racy and convergence. PREMOS [8] appiies a Gauss-Seidel method similar to
the one used 1n MOTIS-C [6], except that the unknown variables in the Gauss-

Seidei formulation are predicted based on previous values.

Switched-level simulators are sornewhat related 10 logic simulators in that
they use levels defined as 0 . 1 and X (X is the undehined or unknown level).
Nodes in a circuit are assigned sirengths which de‘ermine if the nodes can affect
or ne afecied hv other nodes. Each transistor in the circuit :s assigned a sta‘e.
Draring the enalyvsis the states of the transistors are arst heid fixed and the
nodes are 1pdated: the transisior siates are then modided while the node states
are kept Sxed. An example of simulators that use this procedure is MOSSIM 3],
Another approech to switched-level siinulation :s preseated in [4] and is impie-

cented 1n the simulator EXPRESS. The metnod relies on the evaluation of
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svmboiic logic expressions which are generated automatically by the simulator.
The method is also able to handle faults injected into the circuits. Another
type of switched-level simulator is MOSTIM [10}. In this case. the third level X
represents a state that is above a chosen low-threshold level and below another
chosen high-threshold level. Note that this level contains timing information
while the X state of the other switched-level simulators (MOSSIM . EXPRESS)
only represents undefined or unknown values, which means that the X level
can also be O or 1. In MOSTIM, delay tables for a basic inverter circuit and for
an inverter with transmission gate are constructed using circuit simulation runs
in a preprocessing step. Delay information is then extracted from these runs.
The delays of nonstandard primitives are obtained from the tables by using
scaling of existing primitives. The simulator is in many cases over two orders of
magnitude faster than SPICE. and the X level provides fairly accurate timing
information. One drawback is that the tables require a large memory space and

have 10 be constructed for each technology.

Timing verifiers, on the other hand. determine the timing of critical paths
in a circuit. Timing veriflers use methods that are signal-value independent.
However, timing verifiers may report false criticel paths. or paths that are
never activaled in reality. To handle ‘his weakness some mechanisms are
incorperated by the timing verification programs. Two exaripies of timing
verifiers are Crystal {14] and TV [15]. The difference between the two is that
(Crystai emplovs a depth-first search in determining the critical paths, while TV
uses a Hreadih-firs® search. The timing or delay calculation of the criticat path

is hased on approximating the transistors by linear resistors and then determ:n-
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ing the dynamics of the resulting RC network based on some RC “ime constani

approximation, such as the one suggested by Penheld and Rubinstein [21].

In this study a new method for fast timing simulation based on piecewise
linearized transistor models is developed. The method has computational speed
comparable to that of switch-level timing simulation. and at the same time pro-
daces waveforms close 10 those produced by stardard circuit simulatior. The
use of piecewise linear ( pwl ) techniques for time-domain analysis of electronic
circuits is not new [32). It has been used by Hajj and Skelboe in [12]. where the
numerical properties of implicit integration formulas are analyzed when
applied to the solution of pw! systems without partitioning. In [28] Lapiace
transform techniques are applied to compute the soiution in the linear regions
of the pw! equations. In [13] Kaye and Sangiovanni-Vincentelli use Laplace
transforms and Gauss-Jacobi method to compute the solutions of pwl systems
of equations, where the set of equations is partitioned into systeras of scalar
equations. A major time-consuriing step when applyving the Laplace transiorm
method to the solution of pw! equations is the computation of the intersection
of the soiution trajectories with the region boundaries. In [37] 2 Gauss-Se:del
technigue is used to solve pw! circuits. In this case the circuit partitions are
fixed: in addition. Gauss-Seidel techniques are used to solve the pwi/ equations
within each partition. The method can thus be 100 slow when streng coupling

exists amorg the circuit variables.

More recently there have been a few papers dealing with methods reiated
:n some respects to pw! techniques. most notably Elogic [16.17] and Cinnamon

[18]. related in the sense that linear or pwl trarsistor models are 1sed. These

R
-

LG

.

Gl

v
T YT

EY

¥

-
P

D

"]

o

¢

Py

.
&
A

AR

-4,

2

se v, .
Al S A

-




W 0l V0B Vot Se@ Sog Tag ‘el ‘ap "al v R R A T LR TR ‘Gin §Va §02 070 70 400 G R BP0 .00, 8'0.89.0"0.8°0.0°5,0°0,8 9.0'0a0 0.0 2ot 0t % fa® Ba® 02" Bs’ 8a” fa' Ba Ba® Bu" ta" b2 By 0,

t

: o

# ot
7 ,

. 3
: 3
w two simulators will be described next. ~0d

P
E In Elogic [16.17] the transistor model used is the small-signal model "
v:

- linearized at the operating point, or line-thru-origin model. An n-dimensional l\‘ )
& ] !
-

* L9 U
* 1able consisting of a Norton equivalent circuit for each output node as a func- X
g tion of controlling voltage states is constructed. Unlike the method applied in a N

’l

- corvenrional simulator. Elogic discretizes the voltage level, caiculates the total -;:
- concuctance and total current at each node. and determines the time when the -
1o o . A
5; next discretized voltage level is crossed. The time increment A t is computed as W

)
L
o

. follows : 0
> N
., Pl
r

At = (Cyx AV )T —(VyxG ) N

’:; where C,. is the capacitor at node N, /- is the total current at node N, V. is % :
. A
ﬁ the voltage at node N at the present time point , and G is the total conduc- N

tance obtained from the table for node N. Only transitions between adjacent =

. Y
- states are allowed by Elogic. Since waveform relaxation iteration is not carried
-» ".
2 ou: untii convergence. Elogic might make a wrong transition to a new voltage :

J

siate. The solution to this probiem is to use small voltage steps. A better ver- ::’
a ¥

.‘h

Wy . . . . . : .
b sion ( ElogicZ ) which applies the trapezoidal method for ciscretizing the iime o,
wd e

[

- derivat:ve and solves strongly coupled nodes together was developed. Solving L 3
» W

A €
’ N
» sironglv coupled nodes together eliminates the nonconvergence problem of the S

]

Py waveform relaxation method as applied in Elogicl. Since it is more expensive 10 Y
he A
.. use Elozic2, the program is used during aralysis oniy when Eiogicl faiis. -
IN o~
g ] . N

(C'innamon uses a method similar 10 the one used in Elogic in that the vol- X

D . Y

S o™ _ . . . s
' tage level is discretized. However, the trans:istors are linearized at each time a Y

L ]

| %, ¢

A discretized voltage level :s crossed © at each "event” ), ra'ter than obtainirg the - :;
ot te
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transistor model information from tables. The time when a voltage level 1s
crossed is determined by approximating the solution obta:ned using the Laplace
transform method. The approximation is that if the amplitude of the exponen-
tial term corresponding to the smallest (absolute value) of the system eigen-
values is smaller than the voltage step AV. then this term :s the dominating
term of the solution. This method of solution gives more accurate resuits than
the approach of Elogic. but the use of the Laplace transform method could slow

down the solution process.
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There are three pwl/ approximation methods described in this study. The E
8
three methods construct pw! models at the outset in a preprocessing step of the by
y . . VRS
simulation - as is done in Hajj and Skelboe [12] and Kaye and Sangiovarni [13]. SR
w i
Y
SO it is not necessary to linearize frequently as is done in Cinnamon. Compared o
' *" nJ
10 the tables for the transistor models used in Elogic, the table sizes in our A
S
approach is smaller, since the tabies are one-dimensional, and fewer breakpoints E" o)
» “*
.
7y
are needed. x
'y (X
3
The first method is a modification of the Chien and Kuh method of per- !
8 4
forming pwi analysis on simplices [40]. In the original method there is no R W
-~ \
implication of piecewise linearizing the network elements. but rather the -
PO,
=, ”
raethod is applied to general pw/ functions. In our case both the network ele- e
':' ‘
ments and the solution curve are piecewise linearized. There are some advan- w A
)
. : . <
tages 10 using this method. It is simpler than the more common Katzenelson oy \.
s ey
o !
method [29], in that there is no neec to explicitly calculate the bouncary cross- -~
o
", i
ings when the solution curve enters a new pwi( region. Moreover, there is no ! N
1Y
reed for the function to have a derivative; that is, it is not necessary to con- N ‘
;\ A
.ON
- !
[d :‘.\'
S
- I "}\ A ‘,-,"‘f)“‘f.n"" \.’... - ‘.l.‘..\!...~‘q"‘w‘\ v‘-»<.,..‘.. -‘_. ',:4,‘,.-,-’ ot l " (l"‘g.'r.\.'- \-\-.'- -". \{
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struct the Jacobian matrix as is done in the Newton-Raphson method. In fact. ﬂ%
the function describing the device characteristics need not be known. Only data 3
i i fas .'I |..'q‘
points on the current-voltage characteristic curves are needed. In addition, the a,;:-.:,a,".
.‘ “. ..
O,
. o)
convergence of the method is the same as that of Katzenelson's method. “,-::',-"::.
l': ':‘l!:
The second method combines a fast pwl method and the waveform relaxa- RS,
" N S,
LN
tion approach. This method is based on the work of Hajj and Jung [39]. The ,x:%:
NN
idea 1s to partition the system into a set of scaiar pu! dynamic equations. solve 2 ain
@
each equation by inspection, and iterate using the Gauss-Seidel waveform relax- .ﬁé‘:ﬂ
¥ "s
ation approach until convergence. It is found, however, that for strongly- W
. : . e
coupled nodes the method proposed in [39] converges very slowly. Modification ®
1o the original method is described in the next chapter. :"‘é'
\J
0 O f
\]
The third method is a completely novel one, which dynamically partitions ::"-\LV v
ERL R
. -..2
the network during the analysis so that the resulting linear matrix representing E{{‘: ;
\.FN‘,‘ |
N
the piecewise linearized circuit is as block-diagonal as possible. The dynamic &'\';:-
A A,
e
i':'“‘:rA

partitioning involves the comparison of integers representing regions of transis-
1or operation. Fast computation speed without much loss of accuracy has been
obtained using the third approach. Another good feature of the method is the
inherent parallelism of the block-diagonal form as a result of the dynamic par-

titioning. and thus parallel processing can be efiiciently used.

The pw! transistor model and the first and second pw! methods mentioned
above. namely. the pw! method on simplices and the Gauss-Seidel pwl WR
approach are explained in Chapter 2. Chapter 3 is devoted t¢ dynamic parti-
uoning methods. An implementation of the dynamic partitioning method on

paralilel processors is descrihed in Chapter 4. The implementation of the
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approaches for sequential and for parallel machines and some examples are
given in Chapter 5. Conclusion and suggestions for future works are described
in the final chapter. Modification 1o the pw/ transistor model to incorporate
short channel effects is described in Appendix A. A brief description of the pro-
gram PLATINUM. which is an implementation of the dynamic partitioning

approach, is given in Appendix B.
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~ 2.1. Introduction .
o~ oL h
-~ "4
@
- ol
> Simulating entire VLSI circuits using standard circuit simulation programs r.‘-u
o
.. .
" such as SPICE 1s very time-consuming, due to the large size of the circuit. Pwl g:
- A
methods could be atiractive because they simplify nonlinear model representa- E!
> tion, and therefore. would reduce model evaluation time considerably. In addi- !‘
iy
. 4t
‘ﬂ tion, some pw! methods offer better convergence properties as compared 10 the Y
standard Newton-Raphson method used in standard circuit simulators such as );:
N o
I~ SPICE. In thus Chapter 2 pw( methods. together with their advantages and gy

arawbacks, are explained.

¢ - 'v.
.. The currents and voltages in a circuit are governed by the following equa- 5,’;3:
¥ o
. nons : -
\
= (ACL) Ai, =0 (2.1.a) s
e
> (I\‘L) v, = 4[ v (o b) .':‘
'." 5 < - -—ia - \'.
X . , ‘ LG
(resistors ) i ;= f.(v 5] (2.1.c) CH
- (resistors ) v = f (v i ) (2.1.d) 0':,‘
4
- dy. \
- (capacitors ) g, = f . (v.) ., i, = — (2.1.e) X
. Jd1 L]
A ()
“ )
3 2
N
~ [ ]
.ﬁ fl
N
e
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Gnductors ) @ = 1,(,) . v, =d31— (2.1.1)
dr
where i, 1s the set of currents in the b branches of the circuit, v, is the set of
voltages across the branches., v _ is the set of n node-to-datum voltages. and A
is an n x b reduced incidence matrix which contains -1, -1 and O entries. v, ,
and i, , are voltages and currents across the resistors, ¢, is the charge of the
capacitors. v, is the voltage across the capacitors, @, is the flux of the inductors,
and i, is the current through the inductors. The tableau equations in (2) may
be reduced to a smaller set using., for example, the modified nodal approach
[46].
Since the work presented here is based on piecewise linearization of the
nonlinear elements in the circuit, pw/ modeling of nonlinear elements,
represented by f .. f .. f. and f, in (2.1). will be explained in the following

sections. Note that the functions in (2.1) include linear elements and indepen-

dent sources. These elements, of course. need not be piecewise linearized.

2.2. Piecewise Linear Modeling

2.2.1. Two terminal elements

The pw! approximation of the nonlinear characteristic of a 2-terminal ele-
ment 1s shown in Figure 3. In this case the pw! curve is characterized by a set
of breakpoints. The breakpoints define region boundaries. In each region the
equation is as follows:

y=ax o+

where “he subscript i indicates the region number. The number of breakpoints
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and their locations determine the accuracy of the pwi{ approximation with

respect 10 the original function.

2.2.2. Multiterminal elements

In n-dimensional space the boundary between two regions is an (n-1)-
dimensional hyperplane. In each region the pw! function is of the form
f(x)=J x +w =y
where J. is a constant matrix and w is a constant vector. J, and w _ are

defined in each pw! region.

Modeling of multiterminal. nonlinear elements by pw{ functions in gen-
eral requires multidimensional tables. However, if the functions of several
variables representing the terminal characteristics of a multiterminal element
can be expressed as the sum of single-variable functions, or the sum of nested
functions. then the pw! representation can be expressed in terms of a set of
one-dimensional tables. This would save both storage and computation. In gen-
eral. however, such a model! decomposition is not necessary, since one can use
simplices, as will be described in section 2.4. In the next section. we show how
three-terminal elements, such as an MOS 1ransistor. can be decomposed into an
interconnection of two-terminai elements. Then each of the two-terminal ele-
ments is piecewise linearized. Each two-terminal pw! mode: can then be siored

in a one-dimensional table.
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2.2.3. Piecewise linear transistor model

The well-known simple equations of the channel current of an MOS
transistor is as follow [38]:
Linear region:
Ipe = K2V =V, N pe=VE) 0K Vg S V=17, (2.2.a)
Saturation region:
Ips = K(Vgs=V7 >’
K=ue W2t L
w = average surface mobility of carriers in the channel of the device
€, = permittivity of the oxide
t.. = thickness of oxide under gate
L = length of the channel
W = width of the channel
The V. V. and V7, are gate-to-source, drain-to-source, and threshold vol-
tage. respectively. The terms K and V' in the above equations are considered to
be constants. It is clear that a pw/ approximation of (2.2.a) requires the genera-
tion of a two dimensional table with Vi (—V; and V55 as independent vari-
ables. Although interpolation on two or higher dimensional tables is feasible. it
:s much more efficient from the computational and storage points of view to
have a one-dimensional tabular representation. Meyer [25] proposed the fol-
lowing model which transforms (2.2) into sumns of functions of a single vari-

able each :
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=Af(‘vcs)_A/(‘GD) &:N'
=1,-1,

(Vox=Vr i for Vox 2 V7 P!
where f (Voy) = (2.3b) G
ax’= g for Vgy <V, @*

The model depicting Equation (2.3) is shown in Figure 1. The model can be

transformed into an 'Ebers-Molls-type’ model as shown in Figure 2. The a ‘s in

s €2

. " - . . . . _ - ‘-I ..
Figure 2 are equal to unity to keep 7, = 0. N

Py s

The next step is to approximate the quadratic equations in (2.3.b) by pw{

Ve
o
i

’?’;3-"
=
L

functions. An example of a graph of 7/ vs V;y and its piecewise linearized

\S
<
'y

¢

2
L
.

representation is shown in Figure 3. For timing analysis a three-segment model

|
1

TN
has been found to be adequate for providing acceptable accuracy. The resulting NS
s"':\':-.:
) . . (RN
circuit. depicted in Figure 4. consists of @ conductance and a current source, siaiad

ll
L)
'J

%

where the value of the conductance is the slope of the linear function in a seg-

>
J'.-
ment and the current source is the intercept of the function with y axis (the I %
:.
axis). :" /
s
- . . . . - . * i ‘
Using an impiicit integration formula, such as the backward Euler for- I~
e
»
muia. 10 approximate the time derivatives in (2.le) and (2.1f). the resulting N
‘A e
. . . .
owl ocircuit equations at time 7z are of the form TN
bd BCACAC
3 .l-f"f )
- RN
gl x )=0 (2.4) PALSEN
R
. . . . 1 LS
where x couid be the modified nodal equation variables, and x = the value of e
- ®
X at time 7_. Equation (2.4) is usually selved by using Newton's method. At ~
LA
a
every iteration in Newion's method. the linearized equztions are of the form: :
.\.

Ax =5 (2.5)

A number of terations may be necessary before the process converges, provided
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N
o™ it does converge. The matrin A, which i1s usually sparse in circuit anaivsis, is
solved by sparse matrix solution methods 10 reduce the computational burden.
An
A modified Newton's method for pw: equations, known as the
.
N
b Katzenelson's method, guarantees convergence. In Katzenelson's method the
3 next iteration point 1s chosen to be the intersection of the solution trajectorry 9y
" NN
with the boundary hyperplane unless the soluticn is found within the region. A . X
" LA
2 %
b drawback of Katzenelson's method is the time it neecs 1o cetermine boundary N
:N crossings. A variant of Katzenelson's method, the pw/ method on simplices.
Y :
finds the boundary crossings in a simple and more efficient way. The pwl o
L gy
o method on simplices is explained next. o,
932
. Y
o s
o o
’ o
."v
‘ ." 2.3. Piecewise Linear Approach on Simplices @
e This method was first proposed by Chien and Kuh [40]. It is conceptually :'_Z'
L
o:-_, o
Pt similar to the well-known Katzenelson method. The advantages of this method o
| i
! are as foliows:
- LN
. i
’\
. I. There is no need to determine boundary crossings as is done in the K
v -t
Katzenelson method. Instead. a vertex replacement is performed on simplices. <
‘;\
- 2. There is no need to calculate the Jacobian matr:x as is required in
-, the Newton-Raphson formula. In this sense the method i1s more general since
o
& : . . .
a sunciion which does not have a derivative can st.li be solvec.
0;.
o 3. The functions describing the current-voliage anc charge-voitage Nt
il \:.\"
(LS
- v . N 1 {
v characreristics need not he xnown. Sample points on the nultidimensional s
{ o
(haraotenistics are suhaent tor the computauon. Thes inplies that N
. NN
N AN
. f
N e
" ':"v::‘-
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new devices based on new technologies can be studied without having

the function governing the operation of the device derived.

In the next few paragraphs the definition of a simplex is reviewed. This 1s
followed by a description of the Chien and Kuh method. Firally. an algorithm
based on the approach is presented.

Let x, -+ x. €R". A simplex. known also &s a closed convex hull. S

( X *++ X, )is defined by

S(xo‘-.a‘x )=

n
< n
x €RTIx =Fux 0y €1Li=012..nand Fu =1
=0 ;=0
Xo. * " X, are called the vertices of the simplex S( x,. -+ x_ ). A simplex
S{ X, -+ X, )iscalled proper if and only if the in-1) x (n~1} matrix
]
Xg - X,

1 1

's nonsingular.

The boundary H, corresponding 10 the vertex X, is defned as

H, =|x eRTIx = ¥ u, x

3N

As will be explained later in the chapter. this definition of boundarv 1s
very use’ul in determining where the solution curve shouid gzo. Due 10 the fact
; that there is a one-to-one correspondence between a bourdary and a vertex,
instead of cetcerinining which boundary is 10 e crossed by the soiution curve,
the corresponding vertex fo be removed is de‘ermired. This vertex removal

iurns out to be simpier in ceiculation and pregremening than fnding the
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3
L boundary crossing. Reference [40] contains a compiete explanation and deriva-
p

tion of the method. The following paragraphs describe the idea and the algo-

|

rithm.

s

Let the original function to be piecewise linearized be f( x )= y where

f(.): R" = R". A function g (.)approximating the original function f (.) on

VY P P U Y WX
. oyt
W . %

o S{xq -+ X, )is defined by
.
g(x)=[f(xy,), - . 1(x )nu
y A for S(xy -+ x, dand & =luguy,  w, ¥ defined previously for the

).

representation of x €S(x, - X,

RIS

In summary. the representation of a point x inasimplex S( x4 -+ X,

A8

) and the pw! function g ( x ) are as follows :

x €S(xq -0 X, )

n

5 4]

o

I
®
A

'’

[$)°]

ye
by
-
<
i
)
v
"- I+ % ¢
)
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L

» '.n ‘l
£ T T
oy

Once the boundary 10 be crossed is identified. then one needs 1o determine

™"

the new simplex entered. Since corner crossing is not allowed. all vertices.

réer
LSRN

'
s

except one. remain the same. It is shown in [40] that the new vertex X, is the

combination of the old value x , and two of its adjacen? vertices: that is,

o Xy = X+t Xy — X

4 < =1 3

. where Kk indicates the pos:tion of the altered vertex.
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The solution algorithm given below 1s a slhightly modified version of the
one described in {40]. |
r
Step 1 : -

Choose

x,and x, = x ,_,+E, . i=12...n where E, =[(0....0¢, 0..... ol -

and e, > 0O is the i th component of £,
Siep 2:

)\
Let uo=[l,....l]7/(n+l);that is, x0=——z x x % is the

(n+1) _,
center of the initial simplex ).
Set i=0 S
Step 3:

Compute }ll according to the equation e

fixy) ... flx ) y' -

1

LY Y Y N .S A Y O TR NN Y YEE- N YT T Y X T
3
3 Txn 5,

~1

S U e

If every component of @' is non-negative, a solution is found A

x =[xg....x Jua . STOP o
Step 4.

Otherwise, compute A from
ulsl=pu +§g.‘2(,’1.; [P /.Ll—-;f) )
such that

i 0L p<ifor0€r €A .

mmp i tan g @l Raltfale o o el g tc
Py
i

i1} there exists one and on:\v one index k satisfying u (A" ), =0 o

Wil > plaA™ > 0tor ;=4

|l ‘o> e en el 4
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In practice :

Find minimum t ( zmin ) from

0= u +1 (=R ) s if(uf—f )<0

- or - from

0= uf — (g =i ) ; if(pg—fag )>0

Then calculate

almin)=p° 2 mn(p —p')
Step 5:

Replace X, by ( X ;4 X, — X,)

Let i=i+1 and go to Step 3.

We found that the method is slow in analyzing circuits. To reduce the

computation time the nonlinear network elements are piecewise linearized and

tabulated. As a result, we piecewise linearize two things: one is the network
elements and second is the solution space which becomes the space of simplices.
The piecew:se linearization o! the network elements is not proposed in the origi-
nal idea given in [30]. A variable time-step method described in Wei's thesis
[43]is used. A 10-stage chain of inverters analyzed using this method requires

about 20 seconds of CPU time whiie SPICE needs about 13 seconds.

Parailel implementation of the method could reduce the computation time.
Each vertex of the simplex consists of « se. of numbers representing a set of
voltages. For example. an inverier with a pass transis:or is represented by a
simpiex with 3 vertices. Each vertex consists of 2 numbers. representing the 2

Iy

voitazes in the circuit. Each vertex, which is a column in tae matrin of step 3

o “he alzorithm. can be solved in parallel. Because each vertex provides a
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2
complete set of voltages. the entries of the corresponding column can be com- A
puted concurrently. This is performed until all the columns of the matrix are

"y
calculated. .

)

b

The results of the implementation of the method on the All:ant FX/8. a
vector-parallel computer with shared memory, were found to be discouraging. ;‘.‘
The speedup was only a factor of less than two as compared to SPICE. ..
o | -
Although parallelization of the matrix entries is possible, the resulting matrix is .

3
dense, and therefore. no sparse matrix technique can be applied to reduce comn- -:_3'
putation. As the circuit becomes larger, the calculation of the dense matrix <

-
could become prohibitive.

~

Y

.'-l

. N
2.4. Relaxation Methods
The circuit analysis method described so far solves (2.4) as well as (2.5)
directly: i.e.. no relaxation is used. Alternatively, relaxation techniques could )
he used to solve (2.5) (¢.g.. linear Gauss-Seidel or Gauss-Jacobi) or (2.4) { non- )
lincar Gauss-Seidel or Gauss-Jacobi ). In these methods the time step 1s con- e

o

'rolled at the glebal circuit level, and thus are referred to as pointwise relaxa- T
1

; Ay

o
tion methods. The pointwise Gauss-Seidel method of solving (2.4) is as follows: R

-
PN . [ Bd
repeat { foreach ( j in N { )

::, it

-1 t-i 3 A+l , ,
AT S O xy)=0forx. " :}} (2.6) =1
: ' ' ’ AT
. k-1 R B
until " x " T =x "1 € @) M f

pPRPY

.
R A

The foreach implies that the computation for each value j in the ordered set NV

.
"

:aust proceed sequentieliv and in the order specided by the se:.

ANTATN AT T '."[‘.{\'E ~."-.""-"! '.':\"!\'; -."' AT
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Ch

The pointwise Gauss-Jacobr method of solving (2.4) is

repeat { forall ( 7 in \ {
solve g‘,(.\‘k X 1";\A.)=0forx_;”1 ch (2.7)

. k~1 X :
until (11 x " T'=x 11 € ¢

The forall implies that the computation for all values of ; in the ordered set A’

may proceed concurrently. Le.. in parallel and in anyv order.

a Ny Bos e
LS -~

L ]

Relaxation techniques can also be applied at the differential equation level;
i.e., each subcircuit can be solved using its own time step. The Gauss-Seidel

waveform relaxation method of solving a system of nonlinear differertial equa-

"
s
tions of the form L
£
N2
o
x=f(x.) (2.8) :’
s N
:':.
v+l n+) rn+1 n+l - n
_ , . . ) -
X =f(x, ... X 1 X, X cttaX ) (2.9) R

1
s

.
' e e

x T7N0)= x 0]

while Gauss-Jacobi waveform relaxation method is

x, =f.{x,.... X X X Leex D) (2.10)

M AT o

The vector x _ in the above equation corresponds 10 the variables in the subcir-
¢t i In the waveform relaxation method the subcircuit variables are soived
for a ime window T. In MOQOS circuits. subcircuits are of “en obtained hv parti-
sioning the circuit into dc-connected componen's. Floeting canecitors such as
gate-source and gate-drain capac:tors cause loca: fevdback aimenz savarauts, In
m:ming anealysis these small £oatine capac:tors are replaced by cquivaient cape-

Citances [rom the nodes ' the ground [27) As @ reciln the locan feedhacs pathis

N Tyt
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among tlhe subcircuits caused by the floating capacitors are eliminated. When
applying the Gauss-Seidel method. sequencing the subcircuits for analysis could
reduce the computation time. In the following subsection. sequencing of the

subcircuits for analysis is described.

2.5. Analysis Sequencing

Analysis sequencing is applied after the circuit is partitioned. While parti-
ticning and sequencing involve some overhead, the overall result is a reduced
computation time. The idea is that if it is possible to partition the circuit into
"one-way" subcircuits, then only one sweep of Gauss-Seidel analysis is needed
for sulvipg the circuit.

A carcuit which has been partitioned into de-connected subcircuits can be

. represented by a directed graph G\ .E) where V is a set of vertices representling

subcircuits and E is a set of edges depicting signal lines from fanout to fanin.
In the circuut, an edge e € E with an arrow from vertex X to vertex y is the
result of dependent current sources due to MOS transistors in subcircuit Y. The
foiiowing dehinitions about graphs will be used in the description of the

seqiencing aigorithms.

Definition A :
Given a vertex v ol GIVED the set of Yanin vertices and fanout vertices of ver-

ten v

(&
bk}
~

frivi=ow e Viiww) ¢ B

outiv o ={w e NV (vaw) e B
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where (X,y) denotes an edge from vertex x 10 vertex v. The number of fanin
and fanout vertices of v are denoted by nfin(v) and nfout(v). respectively. In
the following definitions and theorems we will consider ordering or sequencing
the vertices of graph G(\',E) when the graph G(\.E) does not contain any feed-
back. This case arises in combinational circuits consisting of simple transistor

models.

Definition B :

Vertex v, in G(V.E) is a predecessor of vertex v, if and only if there is a

J

directed edge from v 1. .

If v, Is a predecessor of v,. then v, is a successor of v..

Definition C:
A linear ordering or sequencing is called a topoiogical order if for every prede-

cessor v of v, in the graph G(\".E), the v precedes v, in the linear ordering.

Theorem a [31] :
The vertices in a directed graph can be arranged in a topological order if and

ornly if the directed graph is acyclic.

The theorem implies that for any combinational circuit the graph
representing the circuit is acyclic and. therefore. the subcircuits can be arranged
:n the topological orders. One realizes that many circuits contain feedbacks.
ana therefore. the corresponding graph is cyvclic. The paris of the graph that
cortain feecback edges ( known as *he strongiy conrected comiponent or sce )

are delected using Depth-First Seerch Techniques. Each strongiy cornrected
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component is replaced by one new node. After the replacement the resulting 7
o

new graph G’ is acyclic and the sequencing method for an acvclic grapk can be P~ !.
L

. . ~ . -,

applied. The Tarjan's Depth-First Search algorithm [24] 10 find strorgly cou e A

nor

nected component is as follows : A
Step 1 : 4]
(initialization step) Mark all the edges "unused.” For every v ¢ \ let .=

- >

3 -', .-’

k(v) « O and f(v) be undefined. { f(v = father of v }. -
Empty S{ S is a stack that stores the vertices in the order in which o
they are discovered }.

l.e1i — 0 and v =s{ s is the 0 node or source node |.

225 BT
X R W A

Step 2 : P:',' ‘
te—1-1.k(v)e—i,L(v)=iand putvonS. i oA
o
Step 3
, .
\ If there are no "unused” incident edges from v, 2o to Step 6. A
Step 4 ¢ L i
A
Choose an "unused” edge v — u. Mark the edge e "used.” S A
Al
. )
Step 3¢ s ’
) e :,
(i1 If k{w)=0, then f{u)=v, v « u. Go to Step 2. ~ b
~ N
(i) 1f k(w) > k(v) (eise orward edge ). Go 10 Step 3. SN
P
N
(n) If klu) < k(v) and if uis not on S ( u and v do no! belong 1o S
the same component ). Go 1o Step 3. L
‘- l,
o _:J.
(iv) If k(u) < k(v) and if both vertices are in the same component ) .
b N
. .
(that:s. uisin S). let L{v) = min { L{v). x(u) } and go 10 Step 3. R
S'\(‘p G

' fln'. ‘, .
. r$r '.'f.'f 1&1(--' .

£ o |-
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e,
. e,
Aoy e,
" If Liv)=k{v). delete all the vertices from S down 10 and including v; ‘:-"
04,
these vertices torm a strongly connected componen?. b
pes
Step 7 : ::
S o,
w (i) If f(v) is defined. then L{f(v)) — min{L{f(v)L(vi}. v — f(v) ;'-:
- and go to Step 3 ; X
5 :3.-
(ii) If f(v) is undefined and if there is a2 vertex u for which k(ui=0, ::",
N
. )
A then let v « u and go to Step 2. ~
d
E-.; Step 8 : o
T Ly
If all vertices have been traced then STOP. ; .
54 <
?.' o
:: After the strongly connected components have been identified using the "~
- >
NS,
. above algorithm. and each scc is replaced by one node. the resulting acyclic 3., '
i graph G’ is levelized using the following algorithm. N
N
e )

~

NS

Algorithm [44] (assign level to each vertex in G').

« €.
Va5,

BEGIN

.l
»

oo
o

Assign input vertices of the acyclic graph G to level 0k « 0

*
s

- R
;.': L. FOR each vertex v in level k DO -
> N
. For each vertex w ¢ fout{v) DO »
br -3
~ BEGIN ]
' s
- nfin(w} — nfin(w)-1 -2
e ) ‘.'
[F nfin(w ;=0 THEN ST\
\

E]
%
¢

¥ ,
ey

assign w 1o leve! k-1

s
R

o END

>

IF leve! K is not erapty THEN

Tl

>
i
Y

7

X,
\J\
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K e k-1
END
After the subcircuits are assigned levels using the above algorithm. they are = N
& X
analyzed starting from subcircuits connected to inputs (ievel 1) to the ones v
RN
W >
connected to the outputs. ;
Algorithm 3 %
\Y
BEGIN ..
), 3
. -
Ke1:
..h
L. FOR each vertex v of G" at level kK DO 2
.
- .
: : . . N It
time domain analysis of corresponding subcircuits ; . ?
.
IF level k is not empty THEN - "
1)
J
3C . NN,
GOTOL: :'_J o,
. ‘-:
K — k-1: *)!
END S
=~
" 'y
ol
e
S
In many cases in digital circuits only some portion of the output nodes are -~ L
-’. .\
. N . . . - -\
oi interesi. Each one of these nodes is sometimes affected by onlv a2 small por- -~
)
ti0n of the subcircuits. This implies that onlv some subcircaits are needed 1o be R
X -
analvzed even if in reality the rest of the circuits are active. Since only some . !r
~ .
n’ C
. T 2,
parts of the svstem are analyzed. the computation ume :s reduced. The method G

.

»
c £
i1,

applied to taxe advantage of th:s fact 1s known in other areas as "back-

chatming.” Basically startng at the ack end of the graph ( that :s the output
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~ nodes of interest ) one traces back untul reaching the front end o! the graph
. { the input nodes ). The vertices traced aurirg the process are the subcircuils
that need 1o be analyzed. A typical algorithm that perforins this back-chaining
~
A task is given in [43].
f.', There are three ways of solving the strongly connected components. The

v,

. obvious one is to solve them as one block. The probiem with this approach 1s
: that the block might be too large. For instance, when the feedback connections
& are from subcircuits at the back end to the ones at the front end then the
L
- strongly connected components are practically the entire circuit, and if the cir-

1] +
>
" cuit is large then the block may be too large to be solved at once. A better way
:f, is to apply a dynamic partitioning method, which will be described in the next
.

) chapter. The third solution involves breaking the strongly connected com-
l ponent into even smaller subcircuits. This is done by removing some edges from
- the scc so that the original scc becomes acyclic and then apply a relaxation-
s

based solution method to the scc that has become acyclic.

N4
.- Having described the Gauss-Seidel waveform relaxation method for circuit
‘~d
N . : . . . . . ;

analysis and the piecewise linearization of transistor models, the fast pw!
P\' )
’ method will now be defined.
-
Ta
F
- 2.6. Fast Piecewise Linear Approach
..
'S
»”

Consider a circuit or a system described by pw! cortinuous equatiens of

."

the form
N
..l

Vil S P AT R R I R r.v\v Ty Fa™a AgTRTET KRR « LI e N T NI Wo i e RIS SOy W SN W O S W S W ..
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x=fixznylUh=a_xzl+ w _ = vz, m=12.. (211

wnere x (L1 y () [0T] - R™ where R™ 1s divided bv hyperplares into r

polvhedral regions. A_ 1S a conslant nxn matrix and W _ a constant n vector

dehined for each region m.

Kave and Sangiovanrni-\Vincentelli [13] use Laplace transforms and the
(zauss-Jacobi method 10 compute the solutions of the pw! systems of equations.
The set of equations is partitioned into systems of scalar equations. A draw-
back to applying the Laplace transform method to the solution of pw! equations
is the time-consuming effort of computing the intersection of the solution tra-
jectories with the region boundaries. The method presented here is based on the
work by Jung and Hajj [39). It combines the waveform relaxation method [11]
and the Gauss-Seidei iterative method 10 solve the piecewise linearized equa-
tiors. The orizinal method [39] suffers from a slow convergence problem when
tight coupling exists between the equations. Modifcation to decrease the com-
pulation time is explained 1n the foilowing paragraphs.

The soiution of Equation (2.11 based on a Gauss-Seidei pwl WR algorithm

[39] is as follows:

(

Stepl0): Serx, (1 =x(0).i=2...n.¢ e[r().:]].
0, €, <7
\
Steplk)iSoive ¥, = o v )= Flo, af Tevieae 40 (0]
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o

Solve r'k(z Y=a . xN)
v X I
2
o s-1 n

+ Faaxi)+ ST e + v, ()]
o ' U X, ‘ Z dm Wim \ !
. . =1 (= -1
Kk, . k
. \___ . .
x(z,4) .1/,(70). forx (z), ¢ elryz)]
Vi,
[
¥
o
bt
-t
Lk ;
‘e Solve X_(z)=ua_, x (1)
-1
&

v * [ zanim x: (Z )+ Worm + A 2 )]‘
.'-T =1

xf(lo)=xn(lo), for xX(z). 1 elr,r,]

v
.

1 p-

At each step. instead of solving n coupied differential equations, one needs to

L ]
NN

solve only n decoupled ones. The process is repeated until convergence is

vl
.‘ obta:ned. :-
2

o
Each of the above equations :s of the form .i
2 v

Xi=a_xtt)+w_ +yv ). ¢ eltgr,)

)
R ne
. The solation "o this iinear first-order differential equation is 1:4

~d

o
r:' 2 -

KA,

. Ty 2 a7 .
xlr)=xlz,)e +eo " fo Tlwl = (F)ir
.'('
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It v (7 'is aconstant the solution can be tound by inspection: oA
| \ Sniiy =
fa =0:x ) =[x )+0Gv .+ Va_le ’ —w, ~c Ja. Py
.‘
Ita, =0 xl=x)+(w_ +c Nt —1,) A
‘.': )
LY

In the process of finding x,(1):{0.T] the values of @ . . change due 10 the

o

W

fact that the solution trajectory moves from one region to the next. Hence 1t s

2
Pk ik on oo o SN J

necessary to be able to find 1t when a new region is entered. which can be done. :
L Jr
Ifa, #=0:1 =15+ Un(v, ) g, '
s
where v, =[b, +c_Ja, Vx (1) +c, 1a.] “n ‘
k oA
Ifa, =0:1=1,+(b—x()ic, b, ?
The conditions fort 2 Oare ?'
::' N
1.if g, >0then v_>0or, MR
Id
2.if g <0then O<v_<l1 or. & .
- :_
3.it g, =0then (b — .\'([0))'C:>0. N E:
‘::: o
In general v (1) is not a constant. However. it v (1) is approximated by a "stair- - :
)
case” function. that is. v i1) 1s divided into intervals and in cach interval it :s - ‘
A
represented by a step input. then the solution x (1) for each interval can be . ',:;
oo
found by inspection as derived above. - 3
- L3
As an exampie. consider a pwl inverter circuit showrn :n Figure 5. Tle :
rransisior mocel and :1s pw! approximation are explained .r section 2.2.3. Soiv-
ing the node equation at the outpul node gives ;:'-]
~ R
Choe Tipy =1y, = 15,=0 o $':
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The output 1s low initially and a falling step input 1s apphied. At t=0 the :nput
falls 1o zero. Checking the pw/ model gives is/ as the oniy nonzero term. lhe

above equation becomes

C,\V,, =isl (2.12)

our

The solution 10 this equation is:

vViooo=1

ou’ oulmu

+ usi* i C.

where V', ..., is the initial value of V7, .

If t is sufhciently large. then at some point in time V', becomes so large

{
that the linear model is not valid anymore. In other words, a new region in the
transistor pw( characteristics is entered. When this happens. which in our case
is at V., = 3.25 volts, the time when the new region is entered is calculated

using (2.12) and the pw! elements that are affected by V, are updated. Now

IR
the gdd and idd terms are also nonzero, and the output node equation is of the
form

Ci‘.ou.’ + ‘-au: IR=1]. RI#0

and the solution is

Vo=V AV =V, rexp (=1 1c) (2.13)
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Again the model is only valid until another region is encourtered, which in our

¥
s

x

b

case ts at V. =4, The time when the new region is entered is calcuiatec using o

12.13): the pw! elements are updated and “he same process continues.
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A When V| . reaches 5 volts. the current sources of the load cancel each A
)
D other (the driver is still off ) and there is no more change 10 the oulput as long b
£ N,
as the input does not change. >~
- i
o Suppose the output of this inverter is fed into another inverter. Then this ::
s output is approximated by a "staircase” function, as shown in Figure 6a (for "
*r
- ~ -
N . ) ) , ; v,
falling waveform the approximation is shown in Figure 6b) and the same N
~ 4 . . o NP,
~° nalysis as above is carried out for each time interval. >
>
8 i . N
~ The above solution of x (1) assumes an input time function approximated N
Y :
t
" . [ N : . J
. by a "staircase" function. Actually, the input can be approximated by other )
i A
tvpes of functions. for example a ramp function. However, the solution would 3
.‘:
& . . . "
- then contain terms proportional to 7 and cxp(—kt ), and so there is no simple 'n":
N ]
(N
.l
- and Yast way 1o get the time when a new region or interval is ¢ntered. 0
»
. x
As mentioned earlier. in some cases the method described above converges =]
. A
, slowly. This is true for strongly coupled circuits, such as pass transistor net- .\
SA
. » . 3 . . '-.N
Y works, circuits with internal nodes. and circuits with floating capacitors. The !
'-_ :?‘-
reason is that an approximate waveform representation used in the waveform "o
o
* . . . . : N
S iterative technique does not give good convergence for strongly coupled nodes. N
. e
s In tne following subsections various techniques to reduce the computation '
. N
g 0
needed in solving coupled subcircuits and 1o ensure convergence are derived. N
. v,
e N
z >
‘s 2.6.1. Pass transistor networks
LS
-
From Figure 7 1t is clear that the waveform at the output node depends on
-
' the other nodes. Applying the Gauss-Serdel pwl WR method it is found that
g more ihan 10 iterations are required for converzence. which i1s relatively slow,
'i
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An approach which is an extension of the Elmore [20] time constant approxima-

tion for an RC tree 10 the pw! case is given here.

The Elmore time constant is related to the impulse response of an RC tree.
An RC tree is defined as an interconnection of resistors and capacitors with no
loops. The resistors are restricted to be between nonground nodes only while
the capacitors are only between nonground nodes and the ground. An example
oi an RC tree is depicted in Figure 8. The Elmore time cons*ant or the delay 1s
defined to be

Te = ZRze C{

7, 1s the time delay of node e. R, is the sum of the resistances cominon to the
palh between input and node 1 and to the path between input and node € and C,

is the capacitance of node i.

The Elmere time constant has been used to approximate rising and falling
times of an RC tree. such as the one reported in [21]. The method in [21] does
no? work tor the pwl approach. since it gives the upper and lower bound of the
waveforms. Also. the function approximation is neither an exponential nor a

straignt line. so it is difficult to get the time when the transistor crosses 10 a

new mvi interval. Cornsider, for example, a circuit consisting of an inverter and

-
«“

pass transistor as shown in Figure 9a. Note that according to the above equa-
tion of the Elmore time-consiant. the time-constani at node | depends on

whether there is a path between node 1 and node 2. If that is the case, then the

time constant used in soiving for node 1 is
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Cue mrere” C‘
ﬂ Node 2 1s more difficult to analvze. There are three cases 10 consider. If the pass E
-~ .‘:.
. transistor is off, there is no change to node 2 (Figure 10a). If there is a resistive \.-:
"_: :.F
. path between node 1 and node 2 (Figure 10b). the time-constant used 1s Y3
" R
a I.=R *(C+C,)+ R *C, o
CE ki 2 2 N
Jue verren due pass (ransisior ._:v
o i the pass transistor is in the saturation region then the Elmore approach s not :,'
b ~
.

[N

applicable because the equivaient resistor of the pass transistor is infinite (actu-

Y

ally the pass transistor is represented by a controlled current source in ser:es

S5

s with a resistor. which is in parallel with a current source!. Depending on O,
> >
‘ 3
whether node 2 is being charged up or being depleted. one of the foliowing N
. o
‘-: ) . \ ‘ -~
~ equations s used. In the former case (Figure 10c), Y
. dv, P
.ﬁ c, = current supplied 10 node 2 >
Jt
- Jv, -
>, I - l.“
e C?_ - (\g"te ) :) Rpass + ‘pcss e
dr S
™
H The solution to this equation is either a straight line or an exponentiai. I node R
=) Ay
o
- 2 is being depleted (Figure 10d ), o
o
. i
L dv . >
c, = current out of node 2
N dJt <]
N 3
A o
dv, .
» C: = —( Veare — V1 )i R;css  ipass
J\‘ u’[
Y
v, s held constant at its initial velue until a new reg:on is entered. The solu-
"
-~
-~ 100 10 This approximation is a siraight line. The simulation resiuit in Figure 9b
S Y . . , P : PR
T of “he c:rcuit in F:gure 92 indicates that the pw! resuit is reasornabiyv close to the

SPICE result.
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NN 2.6.2. Circuits with internal nodes

S '
‘ The equations of a circuit with internal nodes (e.g.. Nand gates) are of the

N T

- form {assuming all capacitances are connected 10 the ground) C ¥, = a; x| + ‘

W \

Lo e

212%1 7813527 T A in T M «

R

Coaty = 85)X) = 8an¥,] = 8p3Xp = e = 2y Xjp + W

-',l-’.A’
P

-
L

2 aTr
LA
.

L ™
O

2

X. - W

X, + X, - N, e + X,
ni™1 T %n2%i1 T 83t T dhn~1%n n

At Vo XX
a3
~
a"
]

L
P

LA A S

where .\'ij (j=1.2....n) is an internal node variable and wj is a constant.

LA A

i One way of simplifying the above equations is to "lump” all the capacitances at 1
the output and neglect all internal capacitances. In this case the eguation

o becomes

4

{ , . . ~ o o _
o Cp+ T C DA =a N~ ay5% +a)3Xi5 * e = A

»
ﬁ‘t",
(@}
]
o
J
VA
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f
o
19
o
ks
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19
w
-
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t
Q
tJ
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i
=
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e,
S

P

O=a_ X =2 X+ ~a
J=a Xy mapHN -

L

Mmoo~ & N~ W
n3"i2 “an-17in ol

. Simuiation of a rand gate :s shown in Figure 11. From “he simmuiadon results

e

we {ound that 17 the internal noce capaeciiance s less then ope tenth of the out-
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put capacitance our approximation gives reasonable results. If the internal node

capacitances are 100 large then the direct method is employed.

2.6.3. Circuits with floating capacitors

For simplicity, we consider a two-dimensionai problem of the form

iy +C;3-{'3=a”mxl - Wi Y0

m
C X, +Caty = an ¥ T Wa ~ yz(t)

The Elmore time-constan! approximation is not applicable in this case since
there is a capacitor between two nonground nodes, and in some cases resistors
may be connected from the nodes to the ground. In this case. when applying the
Gauss-Seidel method to this problem, the "staircase” approximation of the
waveform does notl work since the time derivative at the breakpoints is infinite.
Therefore. a ramp approximation is made for falling and rising waveforms. The
cerivative of a ramp gives a constant function which is suitable for the
approach described above. For a test circuit a bootstrap circuit as shown in Fig-
ure 12a is used. The waveforms are shown in Figure 12b. The ramp approxima-

tion 1s chosen as dv/dt at the midpoint of the rising or falling input. Four

iterations are needed 10 get convergence.

The above approximation methods have their drawbacks. The method in
which the Elmore time-constant approach :s utilized gives good resuits when

1ne pass transistor network is small. When the network consists of more then

taree pass transistors. the error of the pass transistor voliages becomes large.

Trerefore. for pass transistor networks the conventional approach, where the
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tme derivative s discretized using the Backward Eujer Method and where
analvsis at the linear level i1s performed, 1s utilized. Simiiarly. when the inter-
nal capacitances become large compared to the outpul capacitance, the approxi-
mation method for nand-gate type circuits as described above becomes less
accurate. To obtain more accuracy the subcircuit neecs 1o be solved in the same
way as i1 is done by standard circuit stmulation; that s, the time derivative is
discretized using Backward Euler Formula. and then the equations are solved at

the linear level.

The method of the Gauss-Seidel waveform relaxation pw! is fast for
analyzing simple gates such as inverter. nor. nand gates. The computation
efficiency is due to the fact that there is no need to calculate the voltages at each
time point. As long as the transistors remain in the same regions. the solution of
the equation is either a straight line or an exponent:al. Another advantage is due
to the fact that the solution is obtained using the waveform relaxation
approach. which solves the equations at the differential equation ievel. and
hence. there is no need of transforming the differential equation into the linear
level. The drawback is that the method works well only for simpie circuits
sach as the inverter. nor and nand gates, while for other types of circuits the
metheds can be very slow. In summary. the irst method. the pwi analvsis on
simplices. which has good convergence and gives accurele wavelorms. is very
slow. The second pw! method. which solves the pw/ circuit by inspection, is
fast but limited in the type of circuits that can be accurately solved. Realizing
the drawbacks of the methods described above. a pwl method wh.ch is gitte

fast but accurate is desirable. To obtain results as accurate as those from sian-
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dard circuit simulators. an iterated reiaxation-based pwi method :s followed.
To speed up convergence. and thus reduce computation tire, @ dvnamic parti-
tioning method is developed. Solving the pw! circuit equations with a new par-

tittoning method. which is performed dynamically and efhiciently, is described

in Chapter 3.
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CHAPTER 3

DYNAMIC PARTITIONING APPOACH
FOR PIECEWISE LINEAR CIRCUITS

3.1. Introduction

The two pwl methods described in the previous chapter, namely the fast

&

pwl and pw! on simplices methods, require that the strongly connected com-

2

ponents in a circuil be solved either as a whole or using a relaxation methoc.

Solving the strongly connected components as a whole might be 100 expensive

hecause the blocks could be large. The relaxation method is preferable. How-
ever, where 10 break the loops of scc 10 start the relaxation method so that the
number of iterations of the relaxation method is minimized is no! known. The
method fellowed is 1o cut the loop randomly and assign the corresponding node
voltages to the previous values and start the relaxation process. Note that

where the 1oop is cut is Aixed throughout the simuiation.
In this chapter we will describe a novel way of breaking the sirongly con-
nected components dyvnamicaily and naturally. so that the smatiler partitioned

subcircuits are muanageable for analysis. Review of other methods are men-

L] -. l" l. I. ‘L)' -‘

s1oned first.
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3.2. Dynamic Partitioning

There has been an interest in parttioning large circuits into loosely cou-
pled subcircuits. Specifically, in [33] the partition of MOS circuits is obtained by
calculating the equivalent conductances and capacitances of two adjacent nodes.
If the calculated values exceed some predetermined values then the two nodes
are grouped together. This partition i1s done only once at the beginning of the
simulation of the MOS circuits. A similar approach for bipolar circuits is
described in [34], except here the partition is performed dynamically. The
calculation/partition is not done at each iteration, since this would be tco
costly. Only when an iteration threshold is exceeded is a repartitioning per-
formed. At this point it is expected that the speed up in computation is dom-
inant over the repartitioning. Recently. a partitioning based on checking the

coupling terms of the following nodal equation is proposed [18].

'j"’t J\
C,—1+G\,= % C,.—-= %G, V. = %I, (3.1)
J1 Y, dt ey m

where V1 is the voltage at node n. V', is the voltage at node j . J is the set of
nodes connected 10 node n. € is the sum of capacitances connecied 1o node n ,
C.. is the sum of the capacitances connected between nodes n and j. G is the

sum of conductances connected to node n and G,. is the conductance between

node n and noce ./ is the current source connected 10 node n. If the coupling

u’\._
terms Y C..—=and J G, . V' are negligible coripared to the right-hand

»

€] d1 €]

sice. “hen the coupling between node n and node ) € J s negiigibie. and 'here-

fore the partition is performed between nodes nand .
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i In our case the dynamic partitioning is applied 10 circuits consisting of ot
-_\. .
transistors that have been piecewise linearized. The transistor mode!l used is b '
o
‘ the Meyer's model [25]. The model is piecewise linearized; at each pw! region a
E Ny o
™ particular type of transistor (load. driver or pass transistor) is represented by a 2
- conductance and a current source. These conductances and current sources .
3 23
-~
values are stored in a table so that during transient analysis a table-lookup =)
5 2]
» method can be employed. More details of the model are presented in section q
2
b,
vy 2.2.3 and Appendix A. The partition relies on the comparison of integers indi- o
[ 94 . W
. . . . . . . . . . R ¢
cating regions of piecewise linearized transisior operations, and it is done at each N
:"r' |'t
- iteration of the Gauss-Jacobi or Gauss-Seidel method. i
-
i -
, X )
. . . . oy . o
3.3. Piecewise Linear Dynamic Partitioning o
. %
- Let the system of pw! aigebraic-differential equations describing the circuit L
i oy
L= be wrilten as 5
b ‘(‘-' }
. . ::-\.
2 Cxt)=Ax@)+b + y). i=l2..r (3.2) ;
e Sed . . . . . . . .
where C, €R is the matrix representing piecewise linearized capacitors in the ~
=~
circuit. A, and b, represent piecewise linearized transistors and y (z) the input £
pa
.. waveforms. The subscript denotes a particuiar region of the piecewise linear- !.
g o 2
: ized elements. o
.
- Applying an implicit integration formula 10 (3.2), we get f-'.:
L% Xoop ™ Xy :-'
~ (,———————=4A x__,+b +yl__)) o
~ ~ h ' ) ’ ’ ~7
. The Newion-Raphson iterative scheme is used 10 soive the nonlinear algedraic "
‘¥ v
vGaations. Then at each time step. one sdives !
.,
v N\
” v
~ Cal
\I. :-'
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™ l-.
N
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Y

L an e aa -

T

4’

'.-

(C, —hA ) x ., (b, + y(:,_,N+C x,

C C
(——A)x.,=b + yl, )+ —x_=5s, (3.3)
h F

Consider first the case where C, is diggonal (no floating capacitors) with capaci-

tors from nodes to ground. Equation (3.3) can then be written as

(4 1x =5

n~l

where the off-diagonal elements of 3 are created by the resistive part of the
circuit. The aim of our dynamic partitioning approach is to order the circuit
variables so that the matrix A“l is block diagonal, with each diagonal block being
as lower triangular as possible. At every iteration point the values of the off-
diagonal eiements of .5, and consequently the structure of —i are determined

by the local and global connectivity of the nodes in the circuit.

The local connectivity of the nodes is then determined by the slopes of the
characteristics of the resistive elements at the iteration point. In the pwi case.
these values depend on the region combination of the characteristics equations,
which in our case are the MOS transistor characteristics. Let us consider the
‘ransistor as a three-terminal device, &és shown in Figure 4. The contribution of

a given transistor 10 the circuit matrix is as follows :

top "& FE&Tp
—fp T TE&7gp (3.3)
0 0 0

No‘e that since the gate-io-drain and the gate-to-source capacitances are
ignorud. the contribution to the row corresponding ‘o the gate G is zero. Since
‘here are three rezions in each of the two two-terminal pw/i branches in the

‘ransistor mode] as described in Chapter 2 above. there are nine possidie region
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.

e combinations in which the transistor operates. The values of g, ¢¢ and ¢,—¢g;

i 1n each of the regions are listed below.

[y

l.:,

> Table 1 : Transistor connectivity.

t,

-~ REGION g,  g¢ £€r—8.  CcOnnectivity

L (1.1) 0 0 0 Figure 13a

. (1.2) 0 8, ~8s, Figure 13b

. (1,3) 0 8, &,

‘ (2.1) gp. O &p, Figure 13c
(3.1) g, O g, "

t;: (2.2 gp. &, 0 Figure 13d
(3.3) gy, &s, 0 "

~ T

~ 5 — )

3 (2.3) 8, 8, & —8s  Figurel3e
(3.2) gp, &, &p ~8 "

F.,
N
- where the value of g, isequal t0 gg and the value of g, is equal 10 g; . Note
2 2 3 )
- .
o~ that there are only two regions. namely. regiors (2.3) and (3.2). in which the
< entries in rows D and S in (3.4) are all nonzero. The local transistor connec-
..
tivity is then determined by checking the region as shown in Tabie I and Figure
s
‘. . . .
. 13. Note that if the drain or the source 1s connected 10 the groind. only one
' row in (3.4) needs to be considered. Consequently. *he connectivity of the cr-
v .
cuit depends on the operating rezions of ihe transistors. Hence. the siructure or
N R
S the zero-nonzero pattern of A, can be determined {rom the transistor regions
- without any computation. This fact leads to the feasimlity ol performing
cAcent dynamic partitionin2. The jocal connectivity 1n turn afects “he globel
o
A
B
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connectivity: that is. the local interconnection of drair, gate and source defines
the overall interconnection of nodes in the circuit. The global connectivity of

the nodes is then determined by applving a depth-first-search technique [14].

Because of the nature of digital MOS circuits, the above partitioning pro-
duces a block-diagonal circuit matrix with most of the blocks in lower triangu-
lar form, even for sequential circuits. The partitioning. of course, varies with
the iteration points. We assume thal there is a capacitance from every node 10
ground; therefore, for finite time step h the diagonal blocks are nonsingular.
Thus at each iteration, the linear system in (3.4) in most cases is solved in one
sweep using forward substitution, with the possibility of the diagonal blocks

being solved in parallel.

When floating capacitors are al.lowed in the circuit, then the matrix cannot
be in Block Diagonal or Block Lower Triangular form anymore: hence. one-
sweep iteration is impossible. A typical matrix at one iteration when floating
capacitors exist in the circuit is shown in Figure 14. In this case a combination
of dynamic partition and Gauss-Seidel type of iteration is employed. The
dynamic partition is applied to the transistors in the circuit, assuming the
smail-valued floating capacitors, such as the gate-source and the gate-drain
capacitors. do not exist. A large-valued foating-capacitor such as a bootstrap
capacitor is assumed to establish a connection between the nodes where it is
connected. From experiments on some circuits the threshold value is the sum
of the grounded capacitors which the floating capacitor is connected to. The
foating capacitors that are not included in the partitioniag will create feed back

end feedforward terms within and hetween tae diagonel blocks created by the
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:: Ny parutioning. In this case. Gauss-Seidel iteration is nsed in solving (3.4).
~,
r. When a full-blown nonlinear transistor model is used. the method of
' "
o checking the local connectivily needs to be generalized. Instead of region com-
S
"
: ¢ arison, voltage comparison 1s performed on each transistor. For example, from
" p g P p
i Table 1, 1n pw/ case one concludes that the gate is independent of the source-
drain part when the gate-drain region is equal to the gate-source region. In the
K-
a general case the gate i1s independent from the source-drain part when the
"' - difference between the gate-source voltage and the gate-drain voltage is within
S
"y some tolerance A V. Physically, it means that the source-drain current is
M
>0 N
"l independent of the gate voltage when the gate-source voltage is close to the
'l
\j w gate-drain voltage.
o
[~ -
i . . . : . .
AN As an example consider a simple S-stage-ring-oscillator shown in Figure
-
[
. C 15. A worst-case partitioning approach would treat all nodes as one block. In )
-
Ca oy . . . 1 -
N ;f our case this one block is partitioned into smaller subblocks. A Newton-
Pad L]
. D
o . . . . :
- Raphson. Gauss-Seidel method is used to soive the circuit. Let us consider a
‘ 1
&SN N . . < - S
.r".: -~ piecewise linearized driver transistior with breakpoints 0, 1.5, 2.75 and 5 ( Fig-
J{: i L
N ure 3 ) and similarly a load transistor with breakpoints -3. -1.75. -1 and O.
S , l
Assume that a falling step input is applied and dc values for the nodes have
w
7 ?‘\ , e ey o |
oo been calculated [ (node.voltage) : (2.0). (3.5). (4.0} 75.5), (6.0) ]. By checking
.4
\-I -
:: -; the teble of the driver and comparing the reg:ons of the transistor operation.
IS, cne concludes that at this initial state all the nodes are decoupied from one {
7o ]
"-; - another. At cther jterations the partition changes. For instance, at the G }
AL a ) R L o } )
b ranoscconds the voitages of the nodes are [ (node.voliage) : (22,6851 {3.2.813). [
{ .
b i1.0.15). (5.5). '6.0.15) ). Checking the criver tabie cne odilains the regions of
NN
Voo
» ’\
L) -i i
q
S, \
o
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A
\
.o :::
-ﬂ X
';-. the driver ot the first inverter 1o be (1,11, The regions of the driver of the .
o
. ~ e N . . : A
v second inverter are (2.3). This indicates that in the matrix the drain of this :2
.
driver depends on its gate. Similarly. the regions of the driver of the third i,
_;n »
3 inverter are (3.2) and hence the drain node depends on the gate node. As a Ry
o result. the nodes 2. 3 and 4 are in one subblock. By applying the same pro- o
"
“\. t_. g
cedure one finds that node 5 and node 6 are in Two separate subblocks. Figure a
o o
"~ 16 shows the partitions at three instances. Figure l6a shows that the nodes 2.3 e
~ and 4 are in one block which is lower triangular: node 5 is in one block and s
& o
node 6 is in another. All blocks are completely decoupled. Solving the matrix '
A f
2% using the Gauss-Seidel iterative method dynamic partitioning and worst-case " ‘
- partitioning have the same effect. in that the voltages are obtained in one sweep '-I'::
o RN
- . . R . . . e
of calculation. Figure 16b shows another partition using the dynamic partition- NN
Lo
bt
E ing method at a different instance while Figure 16c shows a partition using the .g
N
o
L] ~
' worst-case one at the same instance as Figure 16b. Using the dynamic partition- NN
RE
=" 4 ) o . . . ~
ing method (Figure 16b) the solution is obtained in one sweep. Noces 6 and 2 N,

2

. are solved together as one block while the rest of the nodes are in separate *o¥

i ]

o blocks. On the other hands, using the worst-case partitioning approach {Figure ,}_ﬁ
o <.

-:'l . f{-\

1o¢) would require more than one iteration due to the existence of the upper- . *

. ;, A
- diagonal element. Figures 17a and 17b show the corresponding graph represen- A
. N,

. "
ration of Figures 16a and 16b. respectively. NN
<. wind
L

To reduce the computation time even further. the nonaciive partitiored ? d
,-"' %&-:
- subcircuits could be identified. The nonactive (latent} subcircuits do not neec By
\.
A
.. analvsis. The active subcircuits consist of transistors that do not change regions A
' o
but their terminal nodes are active. An active rnode of a circuit is the one that o
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(node.initial voltage) (2.2.885) (3.2.815) (4.0.15) (5.5.0) (6.0.15)

time 0.9000d-08 nodes (2.3.4.5.6)

0.130d-03 ) 0
0.250d—-03 0.130d—03 0
0 0.150d—03 0.230d—03
0 0 0
0 0 0

0

0

0
0.1604—03

0

o O O

0
0.380d—03

node voltages 0.2885d-01 0.2626d+01 0.3287d+00 0.5000d+01 0.15004+00

OO O W R N RS TN TV ALY

\}:
...................................................................... vl
LYY
Fig. 16a Matrix of the ring oscillator at 9ns .
%
""""""""""""""""""""""""""" - .
o
(node.initial voltage) (2.4.867) (3.0.15) (4.4.125) (5.0.1684) (6.1.663) i
time 0.2300d-07 nodes (6.2.3.4.5) >
0 130d—03 0 0 0 0
0.100d—03 0.160d—03 0 0 0 o
0 0 0.3804-03 0 0 i
0 0 0 0.160d4—03 0

0 0 0 0 0.380d—03 &

node voltages 0.1663d-01 0.4765d+01 0.1500d4+00 0.4109d+01 0.16844+00
b
---------------------------------------------------------------------- <
Fig. 16b Matrix of the ring oscillator at 27 ns (dynamically partitioned) -
W
s

ti.
0.160d—03 0 0 0 0.100d—03
0 0.3804—03 0 0 0 .
0 0 0.160d—-03 0 0 v
0 0 0 0.380d—03 0
0 0 0 0 0.130d—03 e
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violates at least one of the following [2}:
(Vv _ (e, -V (1)) S e +e max(V_ (2 )V (z._,)
m=1,2....
where ¢, and € are the absolute and relative error tolerances for vol-
tages.
(1 (e )-1, G _ V< e +e max (1 (¢ )0 (1 _))
m=1,2....
where ¢ is the absolute error tolerance for current.
1, )—=1 ( _))

(3)h,_,
Qm(zvz)_Qm(zﬂ—l)

> 1

where h,_, is the time step taken by the program at:__, and Q_ is the
charges of the capacitor at node m.

In timing analysis only the first and second rules are checked.

As an example let us consider the ring oscillator example. The following
table shows how partitions change curing the solution process. The numbers in
the parenthesis show the node numbers that are in the same block. for example

(2.3) incdicates node 2 and node 3 are in 1he same subcircuit.

There are two important numerical processes that can be deduced from the
table.
1. Repartitioning.
From time O t0 5 ns the partition stays the same. At 5 ns, the partitioning

changes. and stavs the same until 9 ns when the partitions change again.
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Table Il : Parutions of the ring oscillator circut?

Time Iteration Partition

Ons 0 2).(3),(4).(5).(6)
1 2).03).(4).(5).(6)

3ns 0 (2).(3),(4).(5) . (p)
1 (23),(4).(5), (6)
2 (2.3).(4).(5).(6)

Ons 0 (2.3),(4).(5).(6)
1 (2,3.4).(5) . (6)
2 (2.3),(3).(5).(6)
3 (2,3).(4).(5).(6)

Only those transistors that change regions are .ncluded in the repartition-

ing process.

2. Analysis.

All subcircuits that go through repartitioning must be analyzed. The
subcircuits thati are not repartitioned but whose node voltages change
considerably must also be solved. The rest of the circuit that is not
repartitioned and is latent need not be solved. For example. in the ring
oscillator above. from time O to 5 ns. although the partitioning stays
unchanged. nodes 2 and 3 start oscillating while nodes 4.5 and 6 remain
latent. This means that only voltages of nodes 2 and 3 need 10 be soived.
The ring oscillator. which 1s analog in nature, represents an exireme case:
when time advances. all node voltages change. Digital circuits typically

exhibil a greater cegree of latency.

The above dvnamic partitioning approach is performed on top of worst-

partitioning. which is performed once at the preprocessing step. The
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worst-case partitioning is necessary 0 determine which parts of a circuit are
large enough 1o require dynamic partitioning. Worsi-case partitioning, which 1s
also known as partitioning into dc-connected subcircuils. is based on worst-case

transistor local connectivity as shown in Figure 13e.
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CHAPTER 4

PARALLEL-VECTOR IMPLEMENTATION OF
PIECEWISE LINEAR DYNAMIC PARTITIONING METHOD

In the last few years there has been a growing interest in developing CAD

tools to run on parallel and on vector computers. The idea of parallel computa-

(i tion is that using N processors a program should run N times faster than if on!
['s P
_ one processor is used. In reality, the computing speed up is often smaller than
W2

the theoretical one. The idea of vector or pipeline computers is that by dividing
o a task into subtasks and by maintaining a fow of operand pairs in the analysis
. process the speed up can be increased.

To utilize the maximum capability of a vector and/or parallel computer,
: one needs to use the appropriate languages and algorithms. From the user's
‘ point of view. very little can be done about the language since usually it is
- given by the manufacturer who already 1tailors the language 10 the specific
b'\,
"~ architectures of the machine. Given a particular machine architecture, one needs
r.
, to design algorithms that can provide the best possible results.
. g p
N '
The dynamic partitioning method described in Chapter 3 is weil suited for

n implementation orn a paraile! machine with shared memory. The reason is that
A during the iterations exchanges of vertices and nodes among the blocks in the
o~

graph representing the circuit occur. In other words, there are exchanges of
-
[ 9

'ransistors among the partitioned subcircuits. Iinpiementat:on of the method on
"5 a parallel meachine with local mniemory would have a high cost of
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intercommunication among ihe processors. The machine sed 1o this studyv s

Alliant FX/8. It a parallel-vector machine with 8 processors and a shared
memory and. therefore, is suitabie for implementation of the dynamic parti-

tioning method.

The main iteration loop of the dynamic partitioning method consists of
determining local connectivity. determning global connectivity and solving
each partitioned subcircuit block. Figure 18 depicting the steps is shown on the
next page. The box enclosed by broken lines will be explained later. This box
later is modified to make the approach more efficient. Each process can be done
in parailel as described in the following paragraphs. A general approach applied

to each of the processes is described first.

Ir general, complete parallel vectorization is not feasible. Since vectoriza-
tion of a loop prohibits subroutine calls, only parallelization is useful for most
cases. The parallelization on the Alliant is performed by setting up a do loop,
with a directive for concurrency. A typical format is as follow :

cvd concur
doli=In
call routine
I continue
The loop contains a call to a routine that does a task. The concurrency is
automatic: that is. no particular assignment of processors s necessary. Each of
the availabie processors performs a subroutine call. When one processor Enishes

a :ob. it would automatically perform znother call until eli the n nuimber of

ca.ic are completed. Each routire inside the concurrent do loop. in general. con-
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Solve

Local connectivity checks
(region checks)

Determine new companion

models of nonlinear
elements

Yes

New regions = Old regions ?
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Global connectivity
(Vishkin algorithm)

[Sqpupsp——

No
1> tmax ?

Yes

! Stop

.

Fig. 18 Fiowchart I:dynamic partitioning aigoritkm
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tains a set of common blocks of glohal variables and a set of local variables.
When concurrency is invoked. a stack is created so that each iocal varieble has
n different copies where n is the number of processors (at present n=8 on the
Alliant). Each of the global variables is potentially accessible by many proces-
sors at the same time. This is not desirable because incorrect values would be
stored. A lock is applied during the execution of the code that updates the glo-
bal variable to prevent the concurrent execution by mulitiple processes. A spe-
cial feature that the lock must have is that one instruction must check if a
variable is free and if it is to set ( or lock ) the variable. This is important since
if the setting is not done instantly, another processor might consider the vari-

able 10 be free and attempt to set it.

The determination of local connectivity, global connectivity and solution

of the variables follow the pattern described in the above paragraph.
For local connectivity the loop is

cvd concur

do 2 i=1.number o! transisiors

cali mostbl
2 continue

The input parameters 1o mostbl are the voltages of source. gate and drain. and
the outputs are the regions of gate-drain and gate-source and the associated con-
ductances and current sources. In this routine the connectivity of each ‘ransis-
101 1S determined and the corresponding edges between the source. crain and

gate nodes are created ! if applicable ). These edges are need «d jor global con-

nectivity deterininatiorn.
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Ii' :-F
v The global connectivity is determined after transistor connectivity is com- b
s
a pleted. Before explaining the implementation details, parallel algorithms to b
N
"~
determine the connectivity of a graph problem are described next. Hirschberg ™
Py >
phoY etal. proposedc a method that solved the connected component problem of an :
ki ki &
u uncirected graph in O(log'n ) time using n /log n processors [52], where n is o,
© -
the number of nodes ir. the graph. A variation of the method which requires an "
i even smaller number of processors of max (n,e) is given in [53]). where e is the L
]
> number of edges in the graph. Another algorithm thal determines the con- -y
Q A
nected component of an undirected graph and uses an approach that is different . )
Ly (%"
P
\ v . . - . M .
t from the ones above is proposed by Shiloac and Vishkin [54]. This algorithm &
]
h determines the connected components in O(log n), but it requires 2e+n proces- oy
i .:1
sors. Since the number of processors in a parallel computer is bound to increase Y
o (3
i in 1he future. this algorithm which requires more processors but determines the l
e connected components in shorter time is chosen for our work. Another advan- ;—'_:_
e e
tage is that the amount of temporary working memory in this case - Ollog n) - NG
[ ] ]
5 's much smaller than for the one proposed in [52], which is of O(x 7). Such a f:"
o
- MEmory space requirement can be prohibitive when the size of the circuit is ~

. 2

P B
»
-

large.

The input 1o the algorithm of Shiloac and Vishkin consists of

- *he vertices represenied by the numbers 1,....n

- [ ] ’
{" ({':.’ M :": 'u’ oy .‘17- N
IS 23035 30502 5 Y

- ~he edges specified by a vector e of lengih 2e in which edge (i.]) anpears as 2

sair of direcied edges <i.j> and <j.i>.

.
»
l‘:'
:-
'-
N
, Wy

Soenected.

I'me output s a vector D [1:n] where D [i] po:nts to the root node to which
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A temporary memory Q of length n is needed. ['he two main operations of
the algorithm are
(a). Shortcutting : decreasing the height of a tree

(b). Hooking : reducing the number of trees.

An informal description of the algorithm is given first, followed by the -
more formal one. The notation D (i) = j means that vertex i points 10 vertex |
after the s'' iteration. Initially. each vertex points to itself, that is, Dy(i) = i

for i=1....,n.

Informal description of the algorithm :

Step 1 : First shorteutting D (i) — D, _ (D, _,(i)): -

s—1
If, in s—17 iteration. node i points to some node j and node j points P
1o another root k. then after the s iteration, point node i 1o node k
(shortcutting). .
Step 2 : Hooking trees onto smaller vertices oi other trees. For all vertices
that point 10 a root at the end of the previous iteration check if their
~y
4 neighboring vertices point to smaller vertices. If such a neighboring :5
vertex jexists for a particular vertex i. then hook the tree to which |
belongs onto D ().
Definition D: A tree is stagnant in the s‘* jteration if 11 has not been changed 1n
the first two steps of this iteration; that is. it hes not been subjected to any -
shortcut operation. no tree has been hooked orto 1*, and 11 has not been hooked
onteo enyv other tree. A root of g stagnant tree is @ stagrant root,

Step 2 Hookine stagnant trees:

,
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For all processors of vertices thai point to a stagnan® root. check i
their neighbors point 1o a vertex of another tree. 'f such a vertex jis
found. hook its tree onto D (; .

Step 4 : Second shortcutting D (i) « D, _ ! D _ (i)
Same as step |

A graphical procedure is given next.

Initially. each node points 10 itseif.

After the hooking operation ( on the edges ). the nodes start to point to their

neighbors with smaller node numbers.

Then after the shortcutting operation ( on the nodes ), the nodes point to other

nodes further down.

The hooking and shortcutting operations are repea‘ed urntil finaily ali the rnodes
po:int 1o the root.
A more complete description of the aigorithm and the necessary arravs
tsed are given next. The algorithm contains the vector Q which satisaes :
QUi =5 f after the second step of the s iteration There exists at jeas! one
verteX D opomnting 1o that does not pornt 1o i @t ter the (s-1)th era-

Tiorn.
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8 Qi) <'s otherwise. BN
¢ Step O : Initialization. Dyi) « i, Q(i) « 0.5 — 1.5 1 !
3 iy
i !
q In the following steps, i £ n indicates that the processors are work- o ey
r >
ing on the nodes. and i > n indicates that the processors are accessing .. "
S
,t the pairs of edges (i,.i,). -7 ;;’I
‘ 2 e
: [ :J'
q While s'=s do W
Stepl:Ifi €n -~ i
>, \
. ]
then D (i) « D,_,(D,_,(i)) :
\ if D,(i) = D,_,(i) A
‘ then Q(D,(i)) «s E
s Step2:Ifi>n
! | o | ae
then if D,(i,) =D, _,(i,) -
then if D (i,)<D (i)
i <
l then D, (D, (i,)) « D,{i, -
Comment : 1If D,(i;) has not been changed in Step 1. that is, it has X
r
pointed 1o a root. then the processor checks if !, is pointing to a smaller
vertex. If that is the case, then it hooks the root which is :j
D.(i,)onto D,(i,). Simultaneously. all the processors for which Ny
kn’
D.(j)=D,(i;)and D (k) < D.(i;)1ry toupdate D (D (i )).
."
Step3:lfi>n e
then if D (i,}=D (D (i)} and Q(D(:))) <s o

then if D (i) = D (1.)
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then D (D (i,)! — D (1,)
Comment : The processor checks if D (1,) is a root. If so, it checks by
using Q if it is a stagnant root and if 1t is so it tries to hook it onto
another tree. This is tried simultaneously by the processors such that
D (j)=DUi,, = D_(k).
Stepd:Ifi<n
then D (i )—D (D (i))
Step5:1Ifi<nand Q(i)=s
then s’ « s'+1
S « s+1
end while
Comment : As soon all the trees are stagnant, Qi) < s for all i,
1 £i € n, and thus s’ will not be incremented while s is incremented,
and the algorithm terminates.
In steps 1.4 and 5 the concurrency is across the nodes. In steps 3 and 4 the con-

currency is applied to the edges.

During iterations the nodes in the graph remain the same while the edges
change. The result is a graph that is repariitiorned into blocks where each block
is soived using one processor. A block consists of a root node and its
corresponding leaves. The number of leaves varies from none ( only 1 node in
the block ) to n where n is the number of nodes in the circuit. In the progran
the ioop for solving the blocks is

cvd concur

c¢o 3 i=l.number of hlocks
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L} L

) L3

&4

call solve -
%y
3 continue

&N |

‘0

The output of the solve routine is the node voltages. < ¥
\

« . '

The next step is to concurrently do table-lookup for the transistors with M

the new voltages. If the resulting new gate-drain and gate-source regions are ooy
the same as the old ones, and if the new noce voltages are within a tolerance of e &,t
’r: N
[ ‘w

the old node voltages, then the solution is found. Time is then incremented by ) -
Al

. : : . . ‘ WA
an automatically determined time step. Otherwise, the iteration ( local connec- i) o
tivity, global connectivity, and solve ) is repeated until convergence is g %
¥ (

obtained. Note that repartitioning is only done during the dc solution phase. L
.

.- “.. .-

.
«

During transient analysis the circuit could be repartitioned a large number

of times since repartitioning is potentially carried out at each iteration. It is

7]
~r

!

then desirable to reduce the cost of repartitioning as much as possible. The o

il dy

algorithm described in the previous paragraphs repartitions the entire circuit.
Since only a small part of the circuit experiences region changes, and therefore &
edge changes, the repartitioning needs to be performed only on this changing

part. A modification of the original Shiloac and Vishkin algorithm which only i.\

repartitions part of the circuit is described next.

c)

a - a
R

A
.
"

Modified Shiloac and Vishkin algorithm :

WYY SVl TN TEENTY Y TR N N REDE X Yy T Y T YT Y Y YL Y.
' '}} e
v 2 I

Once the Shiloac and Vishkin algorithm is applied to the entire circuit, the a
A

repartitioning is performed on selective parts of the circuit as follows : "
i-. iﬂ
Step 1. The gate-drain and gate-source edges of a transistor of the )
K4

ch . th - - :"

n=1" iteration are compared to the ones of the n'" iteration. ! v
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2 | |

! different, then check if the root of the source has been fagzed. The

! flag indicates if the root has been added to the list of nodes that need

repartitioning. If the root node has not been flagged, flag it and add

g‘ the root node to the list. The same checking is performed on the root

E of the drain ( and the gate if necessary ).

& Step 2. Each root node in the list has pointers to the list of transistors.

:é(’ These transistors have their source and drain nodes as the leaves of

hg the root node. The edges from these transistors represent edges ( that

!

) is ordered pair <i,j> where i and j are the nodes connected to the

:5 edges ) in the Shiloac and Vishkin algorithm. The original algorithm

o considers all the edges in the graph to be partitioned. The nodes of

¥ the transistors are the vertices in the algorithm. Again, in the origi-

ﬁ nal algorithm, @/l nodes in the graph are considered.

:3 An example showing the method is given in Figure 19, where the circles are the
v

nodes. a circle enclosing a star is a root and the solid lines are the edges of the

e

graph. The edges are created during local connectivity checks of the transistors.

. The broken lines with dots are also edges: however. these are either new edges

P4

created or old edges removed on the n” iteration. The directed broker lines are
pointers created during the Shiloac and Vishkin aigorithm. On the top figure (

7’ iteration ) there are three subgraphs with three roots. During the ' (lera-

Lon one edge s deleted and one ecge is created. These edge changes affect oriv

e, “wo o the suhzrephs. Therefore. the repartition is performcd only on these coi-
o eCtions of ecges and nodes. The third subgraph s ot afected by edge chanees
"
-
ot
L
.
v
| ot \‘;\
| )
,
b
\I
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store in the list of root nodes for repartitioning

added at n +1%* jteration / :

deleted at n +1th iteration n® iteration

PR TR - cman.
-

-
P
. R Y i
3 O
.t

n+1% iteration

Fig. 19 Repartitioning of only some parts of the c:rcuit

not affected
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so there is no need 10 repartition this part. The resulting repartitioned graph at

=
n+1" iteration is shown at the bottom of the Figure 19.

Besides repartitioning only the necessary parts, the computation time can
be reduced even further by analyzing only the active subcircuits. Selecting the
active subcircuits is explained in the preceding chapter. An example showing
parts that need repartitioning ( and analysis ) and those that do not need repar-

litioning but require analysis is shown in Figure 20.

The symbols of solid lines, broken lines. broken lines with dots, circles and
circles enclosing stars in Figure 20 have exactly the same meaning as the ones in
Figure 19. At the top of Figure 20 is the graph at n “* iteration. There are four
subgraphs with four roots. Note that there is one edge being formed at n‘"
iteration. The two subgraphs affected by the new edge are repartitioned, while
the other two subgraphs do not have any edges deleted or created; hence. no
repartition is necessary on these subgraphs. However, one of these two sub-
graphs contains active transistors. This particular subgraphs is solved ( no
repartitioning ) and the other subgraph is neither repartitioned nor solved. The

A, . . .
new graph at n+1 " iteration is shown at the bottom of Figure 20.

Flowchart II. showing the modifications, is shown on page 85. The
modification is done 10 the box enclosed by broken lines on Flowchart I, whick
is shown in page 73. Filter I separates the roots at the end of i** iteration into
two groups, one containing roots affected by changes of edges. This is the group
that is being repartitioned using the Vishkin and Shiloac algrorithm and is later
solved. The rest of the roots are partitioned even further into two groups, one

containing roots with some actve transistors, This group is later solved. The

RGN N AN A A NN AN T 3 Ty
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Fig. 20 Figure si.owing repartitioned, active and latent subcircuits
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New regions = Old regions ?

J -_——— = —

- |
Filter [ : separate roots into 2 groups.

Group A is for roots with some leaves |

change regions. These go to path A below. |

Group B is for the rest of roots. These |

|

go to path B below.

A B l
2 | p
P 2
. . g"-
< Vishkin algorithm to Filter II : separate these roots into 2 groups. ‘ N2
o ] determine connectivity. Group C is for roots with some active &
- transistors. These go to path C below , ot
| Group D is for the rest of the roots (latent). N
ﬁ These go to path D below. | 4
- | |
‘ |
Py !
% | C D |
!
" | | ‘
e ‘ v | Latent subcircuits |
: { (not to be included in Solve) |
I‘.A X
P i | !
) e ! .
| Solve |
“ %
Fig. 21 Flowchart Il : modification :o Flowchart | :f.
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rest of the roots are latent subcircuits that are thrown to Filter ] 10 be checked ;
later if new edges formed affect these roots. '\
. As mentioned before, unlike on the uniprocessor, on the parallel processors -
. ~
’—P
the partitioning is applied to the entire circuit. Most of the time the number of
>
nodes in one connected component is less than three. For these small-size con- ks
nected components a direct method is used to solve for the unknown variables. -,
o
A]
'
For larger connected components ( number of nodes larger than three ) the
blocks are made as lower triangular as possible by applying Tarjan's depth-first B
search method [24] ( 1o obtain strongly connected components within the large [
'
b
blocks ) followed by the analysis sequencing method described in Chapter 2.
. . o
These nearly lower triangular blocks are then solved. An example of the 'y
-
resuiting matrix is shown in Figure 22. As mentioned earlier the large blocks W ;C
b o
do not occur often in circuits that we simulated. - :
- 1y
xS
In summary. the circuit is decomposed into blocks where each block is SN

solved using the direct method by one processor. If the size of the block is smalil

no reordering is done. If the size is large then the block is made as lower tri-

O"
RN Sl O Ik

e
. . . e
angular as possible and then solved using one processor. e
An aiternative approach is 10 solve one block using all the available pro- = 'f:
>
. . .. . . . .. y N Ty At e
cessors: that is. the unknown variables in one block are determuned in paraile!. ~
SN
I
Paraile! numerical linear algebra such as described :n [50] is needed. The draw- - "
back of 1his method is that in many cases the sizes of the biocks are small. This :‘.::
means there are more processors assigned 10 a block than needed to solve for the
>
unknowns in that block. Tuerefore. there would be id.e processors most of the
time. ;3
"J
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If fioating capacitors exist in the circuit then in the mairix the foating
capacitors will create feedback and feedforward terms within and between the
diagonal blocks created by the partitioning. Unlike in the uniprocessor case

where the Gauss-Seidel relaxation method is employed. in the parallel case the

Gauss-Jacobi relaxation method is applied.
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CHAPTER 5 .:v:
Wy
A'G
)
t
o
v
)
IMPLEMENTATION AND RESULTS “‘::
",
NN
Y
All three algorithms described in the preceding chapters have been imple- :’
\
.
o
mented in computer programs to run on VAX 11/780 and SUN workstations. .
4
The parallel implementation of the dynamic partitioning method is for Alliant ::::,
l‘.‘
"
FX/8, a parallel-vector computer with 8 processors. The programs are written r:t'::
2. !
in FORTRAN and each has over 7800 lines of code. »
L% L
[A% ¢
The input file containing MOS network descriptions is similar to the one " :::
D,
for MOTIS-C, except in our case the MOS network description can be in the %
transistor level or the predefined subcircuit level. The predefined subcircuits are A
o
nand. nor, inverter, and-or-inverter, and pass transistor net. j )
-, ‘:
For the uniprocessor implementation the following steps are performed in i
s
the preprocessing stage. For each type of devices a pwl/ table is generated ]
O]
automatically. If no device information is given then default values for typical K :
_
long channel devices are used. Next, the circuit is partitioned into dc-connected
subcircuits {13]. If there exist floating capacitors then each one is checked if it is R

.arger than the sum of the grounded capacitors to which the floating capacitor is
connected. If it is. a dc-path is assumed to exist between the two nodes for par-
titioning purposes. If the capacitors are pwl. worst case values are assumed.
This worst-case partitioning is performed only once and is based on the worst-

cas¢ graph condition of 1ne transistors (Figure 13e). Each subcircuit

PP e T o T S Uy W W
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representing a predefined or a dc-connected component is replaced by a node in
a graph representiag the circuit. The strongly connected components of the
graph are identified using Tarjan's depth-first search described in Chapter 4.
Then, analysis sequencing is performed on the new acyclic graph where each scc
has been replaced by a new node. The strongly connected components are
solved using the dynamic partitioning method. while each subcircuit of the rest
of the circuit is solved using the direct method. If the user knows that some
simple subcircuits, such as nand, nor, inverter, and-or-inverter, are not a part
of an scc, then in the input file the user can specify these simple subcircuits as
gates. This causes the program to solve those simple gates using the fast pwi{
method described in Chapter 2. The dynamic partitioning method automati-
cally partitions the scc into smaller, completeiy decoupled blocks. In the cases
where the blocks are t0o large ( size of block is larger than three ) those blocks
are made as lower triangular as possible by applying Tarjan’s depth-first search
approach and analysis sequencing method described in Chapter 4. In aimost all
cases in practice the dynamic partitioning breaks the feedback paths in the scc.
Information of regions of transistors needed for dynamic partitioning is
obtained during the equation formulation process when the conductances and
current sources are fetched from the pw/ device tables. Based on this
knowiedge of regions. the program determines the local connectivity of the
transistors. This iocal connectivity in turn is used to determine the global con-

nectivity of the iransistors in the scc by applyirg depth-first search [14]. This
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depth-first search is not costly. since the size of an scc is usually not large. The
subblocks are now solved in a sequence which usuaily does not include any

feedback: and thus convergence is obtained in one sweep.

Waveforms of some examples are shown. The first one is a S-stage ring
oscillator circuit (Figure 15) containing floating capacitors. The example is used
to show that fairly accurate results are obtained by the pwl! method.
Waveform SPICE is obtained by SPICE using level 1 model with external capa-
citances between any two adjacent nodes included. Waveform PWLFULL is
obtained by using the pw! approximation and solving the entire circuit without
partitioning or relaxation. Wav.form PWLRELAX is obtained by dynamic par-
titioning and relaxation iteration to take into account the effects of floating
capacitances between subcircuits. From the figures one can conclude that the

pwl method gives accurate waveforms.

The second example is a tally circuit (Figures 24-25). Worst-case parti-
tioning would define the entire circuit as one block while dynamic partitioning
decomposes the circuit into small subblocks that can be solved separately: as a

result, computation time is reduced.

The third exampie is the 10-stage inverter circuit (Figure 26). The output
of the #frst, fourtin. seventh and tenth inverters. togeiher with SPICE
waveforms. are shown in Figure 27. In this example the circuit is specified as
inverter gates and the fast pw! method is applied. Note that for simple gates

such as an inverter the fast pwi{ method is fairly accurate.

The fourth example is a full-adder circuit containing pass transistors (Fig-

:re 28). The waveforms of the sum and carry nodes are shown in Figure 29.
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Fig. 24 Tally circuit
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The last example is the pla circuit (Figure 30). The waveforms of the out- e \
NN
: . . hut e le
put of the last inverters of the pla and SPICE waveforms are shown in Figure ':"
: , o , R
31. This pla contains a strongly connected component which is solved using the “,.:,
iy
. . . ) ) vy,
dynamic partitioning method. The rest of the circuit, which consists of simple o',‘"ﬁ::5
'::'_u::'l
gates. is solved using the fast pwi method.
T
-.\_ ‘:n.
It can be seen from the figures that the pwl approximation is guite accurate RGN
ASERANLS
s
compared to SPICE. oA
®
) i i - i MO
fhe computation time as compared to SPICE is shown in the following N .:,.:a
SONOS
K l'::.'::f
table. ’ a'.‘:;:i:
= Vﬁ:.
J (J
Table III : Comparison of the pwi method and SPICE h n.'::
“ ".I,
h 'D.
Analysis time 7*’79
circuit devices dynamic no dynamic SPICE j‘-;:f” )
partitioning  partitioning :a‘:: ;
Tt A
S-stage ring :6:,-»*
oscillator ;’\h
no floating 11 1.10s 1.417s 50.13s .2
capacitor) :i’.:‘r\
, o
5-stage ring S
. NN
oscillator oty
(with floating 11 1.17s 3.000s 45.20s Eﬁ'_\- _
capacitor) e
— e : 3 REACDY
tally circuit 18 2.550s. 3.167s 1323s BN
pla 149 6.383s 14.22s 977s ‘-ﬁ
cmos alu 142 1.171s 22.77s n.C. -::.;{*_,:,;
N
n.C. D DO CONVETRENRCE Gy
h‘ -. .
A
~ ,-._(.
Tte table shows simulatior results performed on some circuils. One observes \-\-_:"
NN
that computation tme is reduced when the dynamic partitioning is anplied 10 e -
ooy
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g the circunts. For small circuits ( less than 50 transistors ) the speedup 1s about R
40 as compared to SPICE. For a larger circuit. such as the pla. the speedup is -
-,
over 100. -
oy
| . | a
Computation time comparison with respect to RELAX2 [26], which applies
worst-case partitioning method . is shown in Table I\. The table shows that -
'
pwl method is more than 10 times faster than RELAX2, even for these rela- “
tively small circuits.
NS
| R
Table I\ : Comparison of the pw/ method and RELAX3.2
W ::
i Analysis time
Pad
v circuit pwl with RELAX3.2 ‘.
d {number of dynamic o
b devices} partitioning B
| 5-stage ring -
Y oscillator ‘
" (no floating 1.10s 14.02s »
N capacitor) {11} N4
N pla {149} 6.383s 155.36s N
»
N To obrain the rate of growth of computation time vs. the number of dev- v
- i‘.
- ices. an n-stage ring oscillator circuit is simulated. The CPU-times for the g

-

aralysis times for various n are shown in Table \" and plotted in Figure 32. We

observe that the time grows fairly linearly as n increases.

ALY

A

)

*_"' ... ; . f ~ ¢ ‘.. \ '-l' - I~" \-\(.'f‘.(_.-‘._' J.\- -_‘r‘\.;\r_-r\ '\'\- T AT _"_'- ""._-.\q \-.\' _"'\'.‘1 W _.-.‘.-

Pl = 2P

a_e_a s -

"wl’s

RN RS I N

,"

A Ay



RN ‘e 0’0 0% 0% V'l ag. v V508 99

Ry 080" 0t Bt Gt B b0 A A > da® 8o~ 5aary- 24 28 o™ 4 “eghngd %y
4 '::":f'..::'

) ':'1:

N

103

-

T
|52 A
S
-..a%..- T
S

ITI
100

number of devicas (n)

,‘;;-F
O

aad

¥
LT

X
v

Fig. 32 Plot of computational compl- ity
’
7

‘_
O

—
;‘:'.
~(;‘I
-

L

i®

1@

[*]

oK 8 o
.

*

p)

g T T ST Y IR L W A A Ny N S VP S WL S Y T P AR 0 Vo T T
I"‘ s ?i::! N e e T FEPCA I I PRGN, PN P L TP SN NS




104

Table V. Computational complexity

CPU-time vs. n
Number of devices (n)  Analysis time in s

19 4.367
39 9.183
59 13.933
79 18.567
99 23.183
119 27.717
139 32.55

159 37.167
179 41.833
199 46.383

From the table above one can conclude that the CPU time taken by pwl

method ( method 3 ) grows linearly with the circuit size.

The dynamic partitioning method ( method 3 ) implementation on the

Alliant FX/8 is similar to the one for the sequential computer. The difference is
that in parallel implementation there is no need to partition the circuit into dc-
connectec components at the outset. Instead. the partitioning is applied to the
entire circuit. Aiso, there is no need to sequence the partitioned subcircuits since

they are either completely decoupled from one another, or a Gauss-Jacobi

&~ . F

method is used when a small capacitive coupling exits between subcircuits.
However. the parallel implementation contains a locking mechanism that the

sequential one does not have.

The following table shows the results of two circuits run on the Alliant

FX/&. The circuits chosen consist of more than 100 transistors and are expected
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1o show some simulation speed advantlage on the paraliel computer due to the
presence of large. strongly-connected components in the circuits. Speedup
obtained for the pla circuit is over 600 times as compared to SPICE, while the
speedup of the barrel-shifter circuit is over 400 times as compared to SPICE.
The SPICE results are from a uniprocessor implementation. Compared to 1 pro-
cessor, using 8 processors is over 3 times faster { for pla circuit ), aboutl 5.7
umes faster ( for the barrel shifter ) and about 5.3 times faster ( for the digital
filter ); this means, for the pla. the efficiency of processor utilization is over 37
percent, for the barrel shifter the efficiency is about 71 percent and for the digi-

tal filter it is 66 percent.

Table VI : Analysis time on the parallel processors

Analvsis time on Alliant FX/8&

dynamic dynamic
circuit devices partitioning partitioning  SPICE :
(8 processors) (1 processor) '
pia 149 1.1ds 5.433s 977s
barrel shif ter 256 1.983s 11.3s 862s
digital filter 698 11.6s 01.31s -

Another version of the program contains filtering routines to do selective
repartitioning and latency checks. The aim is to do repartitioning and solve
only on some part of the circuit. For the pla circuit the computation time is
reduced from 1.417 seconds to 1.1 seconds. For the barrel shifter no speedup is
obtained: this is due to a large number of repartitioning and solvirg. The time
spent on selective repartitioning and latency checks for the pla is 0.133 seconds

( or about 12 percent of the totai CPU time ). while fy- the barrel shifter it is
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Ly U
0.28 seconds ( or about 14 percent of the total CPU time ). For the digital filter il
!
the time spent on the selective repartitioning and latency checks is 2.717 h_ i
. - 4
U
seconds ( or approximately 20 percent of the total CPU time ). -
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The piecewise linear approach, as described in this thesis, is an atiractive
method for solving circuit problemns. This is due 1o the fact that simplified
( pwl ) transistor models are used yielding a lower memory requirement and
faster computation time. and yet the method produces results that are close 10
those from other circuit simulators. Moreover. convergence is gnaranteed in the

pwl Katzenelson method and its variants.

A pwl MOS transistor model approximation is described in Chapter 2 and
Appendix A. The model contains two parts: namely. the gate-drain and the
gate-source parts. Each part consists of a current source. a resisior and a depen-
dent current source. The dependent current source.is inserted to satisfy the
requirement that the sum of currents at the gate node is equal to zero. Higher
oraer effects are modeled by the use of tabulated nested functions. as described
in Appendix A. The pw/! approximation method is also easily appiicabie ¢ the

Ebers-Molls bipolar transistor model.

Two pwl methods are also described 1n Chapter 2. The first i a
mod:fication of the pwi method on sinplices. The method is suitabie for circuits
that dernand miore accurate ana.ysis. The idea 1s similar to the pw{ method
developed by Katzenelson. except in this method. rather *han £nding boundary

LTOSSINES, & vertex to be removed is selected. This veriex removal process s
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much simpler than determining which boundary is crossed. The original -
- .
method is general and slow. For timing analysis some speedup is obtained by 5
(g™ A
. . . . . . ~
piecewise linearizing the transistor model. Even after piecewise linearization of PR
P
the model and parallelization of the calculation of the matrix entries. the N
. . . -
method is not fast enough compared to the standard circuit simulator SPICE. W
! NI
D »
The second method is a fast pwi method where the soiution is obtained by par- LN
titioning the circuit into one-way subcircuils, where each subcircuit has one = ’
) . ] Yo .;
output with one capacitor lumped .t the output. The waveform solution at the ;.3 )
output of each subcircuit is found by using pw! Thevenin's equivalent circu:t. e
R,
Waveform relaxation is applied when feedback exists among the subcircuits.
: NS :$
Thre method is fast and fairly accurate for simple circuits such as nand. nor and N
. . . . . LS
inverters. Larger circuits such as pass transistor networks require direct - t
- ol
methods, since the fast pw/ method is not accurate enough and tends to become * o)
slow. o !
& A
i Described in the third chapter is a new idea of dynamically partitioning E
N
J the pw( circuit. The method is fast because the partitioning is based on compar- ~
o
KN
ing2 integers representing the gate-source and gate-dra:n regions of a transistor. ',: .:
Sirnulation results on a typical exampie show that more than two orders of .. !;
5
} . . . . A . . i M~
magnitude speedup is obtained. The dynamic partitioning method is suitable for ]
A
. soiving strongly connected components. or dc-connected subcircuits where the oo
. . . . -
rumber of trars:stors is large. Smaller subcircuits can also be solved this way. “ o
N\ W7
N
or with tne fast pw/ method described in Chapter 2. or with the direct method. ~ -';
] . . . . N e :'1
Another advantage of the dvnamic partitioning method is its suitapility for
F - o R
paralle! impiementation. This is described ir Chapter 4. The local connectivity, . )
\: .'.'
N
S J:

Y

*
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L3

: N global connectivity and solving the dvnamicailv partitiored subdrcunts can be
n oerformed in the concurrent mode.
» The detailed parallel impiementation of the dvramic partitioning method
2
) is described 1n Chapter 4. The simulation of @ number of crcuit examples
B o A
~ shows good speedup and efhciency of uuilizing the parallel processors. Because
-~ -
.. the dvnamic partitioring method partitions the circuit into completely decou-
o
™ ‘
- pied small subcircuits, the gain in computation speed is fairly linear as the
- -
n number of available processors increases.
]
o The iinplementation issues of the program PLATINUM which is based on

the dvnamic partitioning method is described in Chapter 5. Severa: waveform
examples and comparison with respect 10 other simulators are given to show

‘he validity of the method.

PLATINUM as an experimental tining anelysis shows good results for

L e
L3

MOS circuits. More enhancements to the program are needed: in particular. 1t

L could be extended to handle bipolar circuits. It should not be a difcult task.
N
since the binolar transistior model is already in the Ebers-Molls configuration
‘f\
o which s exactly what is needed for applying the dvnamic partition:ng method.
) Fature work would also involve more testing on larger circuits and on other
’ ,\
a *vpes of technology such as gaihium arsenide circuits. Also. since the method s
y ..
L - . ) .
¢ h:ghiv paraileiizabie, it would be interesting 10 implement the inethed on a
' - < < <
E iy massively parallel machine, simiiar "o the recen® parallel implenentaiion of the
;o
relaxation method (48]
13 -y
& Ln
! Anointeresting tuture work is 1o incorperate the dvnamic dartitioning
]
L
"- :: method desemded in this thesis nto @ rvvetor sach as RELAX2 which
L ¥
~I.
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employs accurate transistor models. Although PLATINUM uses simple pw!

transistor models, iterations are necessary when floating capacitors, such as
from the gate-drain and the gate-source capacitances, exist in the circuit. Since
iterations are performed even for the simple models, it would be a good idea to

use more accurate transistor models.

The questions that need to be answered in this case are

1. How does the selection of breakpoints affect the number of iterations to
reach convergence.

2. If the selection of breakpoints affects the iterations, would it help,
for accuracy. to have multiple pw! mode!s for each transistor. The multi-
ple pwl model is based on a nested tabulated functional represented and
is described in Appendix A. A tradeoff between speed and accuracy is an
issue here.

3. Compared to the heuristic partitioning method currently used in RELAX2,

how much speedup does the dynamic partition provide.

It is possible that when more accuracy is desired the dvnamic partitioning
method based on a simple pwl model can be used to partition the circuit, while
more accurate functional models are used 1n formulating and solving the equa-

1ions.
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APPENDIX A

SHORT CHANNEL PW L TRANSISTOR MODEL

This Appendix contains the more complete Meyer's model that includes
the effect of the body-source and body-drain voltages. The simplified Meyer's
model is given in Chapter 2. Instead of using

f(Vox)=Wey =V )’

one needs to use [25] :

.4 ,
F Vo) = (Vo =V )+ —k (V424 0, )32 (A1)
3 J

G

o
Ry

I‘

“~

F'd
5y

o \172
k =ZGX/€CX(2‘Z GS: IV)

;b{

<

where Vyp is the X 10 body voltage { X is either source or drain ). P, is the NSNS
Fermi potential of the substrate, ¢, is the permittivity of the substrate, N is ,:_.!r

o
the substrate concentration, and k is a constant. Note that the inclusion of the RCSCR A

<
1
[

body effect preserves the one-dimensionality of the tables. Only one additional

-able for the body effect is neeced 10 represent the second part of (A.1) for each

=
e

Z

device. The short channel cdects on the threshold voltage V', and the mobility

oo
LS,

g Can also be easily included in the tabular representation. The threshold T e
et

v ‘ YA TR ) 1 (s e N 53 b ‘
coltage Vs 2iven by (55]: TN

Vy =1

20, — oV +ylg (20, =Vt T -,
-+ /"-‘. ‘:d), - \.ES) "4’:\.2) ::‘:

where .
Vi, = plarhand voltaee
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F¢ =correction factor for short channel ¢f fects
F =correction factor for narrow chunnel e/ fecrs
v = bulk threshold paramerer

= coef ficient of staric feedback

Q
=F7TA——— where
c.L’

°ox

ETA = constan: static feedback ef fect parameter

Q = empirical constant

C,. = oxide capacitance

L =channel length

The mobility uepr is defined in two regions as follows:

For the saturation region :

Lo
Mrppr =i = A3
S ¥ THETA(V —1) (A.3)

whiie for linear region :

Mg

Yepp =
K (A.d)
I+ —1"
VMAXYL
LO is the surface mobility. THETA is the empirical mobility medulation
parameter and VMAX is the maximum drif: velocity of the carriers. After

teking :nto account the short chanrel effects the equation becomes as follows:
e e i v ot Y e
Ipg = KV DS)[“GS—\ ' Vge b DS*‘]} + {-3-1((\ gt 2*d.
I v e R
= Wop =V (Vag Ving T = { =k (V7 g +2% 0, Y

where KV Vpol = ppene W 20 L
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A table based on Equation (A.5) would be muitidimensional. To alleviate this
dificuity we choose a set of discrete values of Vg,V and V5. Each combina-
tion of VeV pg and V¢ is used to obtain the threshold voltage V; and the
mobility ugrr. Then for the pairs V; and ;. We generate a set of values of
conductances and current sources as the piecewise linearized model. For the n-
1ype device the values of V¢ used in the table are 0,1.2.3,4.5. Similarly, the
values for Ve are -5.-4,-3,-2.-1.0 and for Vi 0.1,2,3.4.5 ( V¢ < O indicates
the device is off ). If more accurate results are desirable then more combina-
tions of Vpe.V ps and Vi are used to construct the table. The advantage of this

method is that simple table lookup methods can be used to incorporate some of

the short channel effects.

The above method can be considered as a nested modeling of the device.
First, one determines the values of the variables at the lowest or deepest level
of the equation. In our case the variables are V', and u. Then using these
values, values of the variables of the higher level such as currents and conduc-
tances of the device model are calculated. Since in our case the independen:
variables Vg V"o and Voo for the tables are determined a priori and pwi!
transistor approximations are tabulated in the preprocessing step. no calculation
of a transistor characteristic is performed during the transienti analysis. and
hence the computiation time is reduced. The calculation for the device elements
is done during the preprocessing step and the values are stored in a tabie. This
method of nested device modeling is similar to the one in [56]). The difference is

as follows. In [56] the currents and conductances at verious combinations of

voltages are tabulated. Ex:irapolation and in‘erpoelation are necessary for any
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combination of voltages outside the tabulated ones. In the approach cescribed

here the tabulated currents and conductances are the results of piecewise
linearizing the original function. As a result, the currents and conductances for
all combinations of voltages are defined, and therefore neither extrapolation nor

interpolation is necessary.

To study the accuracy of the pw! approximation method described above. a
CMOS latch with short channel transistors ( 1 micron length ) is analyzed
( Figure 33 ). SPICE outputs using simple model ( level I ) and semiempirical
model ( level 3 ) are shown in Figure 34. It is clear that there is a noticeable
difference between the SPICE outputs when using level 1 and level 3. Figure 34
also shows the outputs using the pw! model. It can be seen that there is good
agreement between the output of SPICE level 3 and the output using the pw!

model.
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APPENDIX B

DESCRIPTION OF THE PROGRAM PLATINUM

This appendix contains information on how 10 use PLATINUM: Piecewise
LineAr TImiNg simUlation for Mos circuits. The input to the program,
referred to as the circuit input file. is simiiar to the input fiie for the program
PREMOS. PREMOS is a simulator developed by Wei [43]. PLATINUM is more
general than PREMOS. Some of the features of PLATINUM are

1. It handles circuits described at the transistor or subcircuit level.

[19]

. It has a built-in table for a typical pwi MOS driver, pull-up and pass
transistor. The input file may contain user-specified transistor parameters

which are used by the program to generate new pw/ tables.

[V

. Capac:tors are specified either from a node to ground or from a node ‘o

another node.

The 1ypes of subcircuits that can be handled by PLATINUM are nand. nor.,
and-or-inverter and pass transistor network. The model is described as
MODEL modnam type (parameters)

where modnam is a user-specified name. tvpe is any one of the following :
rand. nor. and-or-inverter. pass lransister. voliage source. and a set of
appropriate parameters. The appropriate parameters for each type are ( please
refer 1o Figures B1-B4 ) :

IYPE PARAMETERS

nand wiawllcaa ¢l

nor wio wlicocl
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For example. MODEL nd2 NAND (1 0.2 10f 10f 1001)
The models are used in the circuit description. The circuit description is of the E
form “m
7

name nodel node2 ... modnam

"name” is the name of the circuit element. The nodes "nodel node?2 ... " (on-

tains the node connections. "modnam"” is one of the model names. The node con- &
< ¢
. A )
nections must follow the order given below :
o~ :\'
TYPE ORDER OF NODE NUMBERS T
Y
~
nand alalil S
)
2) »
nor olo2l r
-l, '.
andoi ala2..olo2..1:11:2.. i(na-1) e
: &
[ 4
canet nln2 t
g,
IS G
SONTC L= v,
R
Besides in the subcircuit level. a cirauit can be described in the transistor N
cevel. The format for the transistor level description is -~
nante drain gatle source hody trantyvpe L;-
where "name” 18 the name ol the transistor element, "drain. 2ate. source bodv” < l
are the MOS nodes. and "ran*ype” s the transistor "vpe '+ such as PASS. ORS
|..\ (--
DRIN ER. LOAD ). Drain and source nodes are interchengeable. e
A
Besides circuit deserintion the input fle also vontains oprions commands. ',
"w
: .
i ne avaliahie options are AT
. "
<
..
)
O
-
&,
‘&

O A s
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)
§ X
D 123
Y \
N
tme 1$10p tstep
' time is the command. 1stop is the length of analysis ime, and 1s1ep is the
time step.
SRS
(N,
s preset (nl.v1)(n2,v2) ...
. ' preset is the command 10 preset at the beginning of simulation a node to a
|- specific voltage. nl,n2.... are the node numbers. and v1.v2... are the noce
-
voltlages.
;‘ E: send nl n2 ...
: »
\ send is the command to print out the node volitages, nl n2 ... are the node
-
. rumbers.
YRR “able (w.l kappa.vtvl.v2,v3n)
AR
‘,'; table is the command to generate new tabie with user-specified pararie-
.
‘ ters. W is the width, 1 1s the length. kappa is the transconductance
oA parameter. vt is the threshold voltage. v1.v2v3 are tae selectec voltage
Cd
S
breekpoints, and n is the type of transistor (n=1 s for driver. n=2 is ‘or
R loac and n=3 is for pass transistor .
p. end
. “- . N N
. end is a command indicating the end of the input tle.
.
Fo _
An oample of a compiete input fle is given next. It is @ pia circu:t that s
D referrec 10 in the thesis.
Y
L Pl A Gnite-state mach:ne implemenring the light controller
- < *sabarcuit model card
model v nor2 (51 108 1000
model nor3 andoil 3 5 1 101 108 10f 1007 0 3)
A moce] nord andoi(3 3 1 101 10f 10f 1007 0 4)
N mocel noirl transt 3 12 108 1001 10f 50f 1 1
§ b
¢ -
O
S
R At S T R NI A NPT SEN BN P Ny N A RO CICNINN

~

f,

L,

PELLTT RS AS A

J

SR ST N YW VY il iR

> e

»

PO Nk 2 A

I""

e Tn Je JR R R Y]

.
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PERTEP TN

mode! notr2 trans{5 1 2 10f 100f 10f SOf 2 1)
model notrd trans(5 1 2 10f 100f 10f 30f 4 1)
model nowr5 trans(5 1 2 10f 100f 10f 50f 5 1)
model pass passt

model cap capcr(50f)

model clk1 source (4 1 10n 5n 10n 5n)
model c1k2 source (5 0 5n 5n 5n 5n)

* AND plane

x1 1117191 nor3

x21317 192 nor3

x3121417 19 3 nord

x4 1518 194 nor3

x5 10618 19 5 nor3

x6 121318 206 nord

x7 1118 20 7 nor3

x8 14 18 20 8 nor3

x91517 209 nor3

x1016 17 20 10 nor3

* OR plane

x115678921 notrS

x44 21 56 28 pass

x123356 22 notrd

x45 22 56 29 pass

x1333578 1023 notrd

x40 23 56 30 pass

x1d6 78910 24 notrd

x47 24 56 31 pass

x154525nnotr2

x48 25 56 32 pass

xlvo 123432 notrS

x49 26 56 33 pass

X170 1027 notr2

x50 27 56 34 pass

* outpul registers
x18 28 35 notrl
x51 35 55 49 pass
x19 29 36 notrl
x52 36 55 48 nass
20 30 30 37 inv
x21 31 31 38 inv
N22 32 32 39 v
x23 33 3340 inv
x24 34 33 41 inv
* capacitors of pass trans
x50 28 O cap

x57 29 0 cap

38 300 cap

x37 31 Ocap

et s
PP )

v -wL"*
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w
&
) 60 32 0 cap

x61 330 cap
'- x62 34 0 cap
~ xbb 48 0 cap
. x67 49 0 cap
ks * input buffers
- x25 57 42 notrl
. x53 42 55 45 pass
2 X26 58 43 notrl
e x54 43 55 46 pass
. x27 59 44 notr!
b','-' 25544 55 47 pass
"" xt:3 45 0 cap
PR x04 40 0 cap
e x65 47 0 cap

* inpul registers
. x28 4545 50 inv
" 220 46 46 51 inv
x3047 47 52 inv
. x\31 4& 48 53 inv
- x32 49 49 54 inv
x335050 11 inv
x34 454512 inv
[‘ x35515113inv
‘ x36 46 46 14 1nv
x37 5252 15 inv
N38 17 47 16 inv
~40535317 inv
xd1 48 48 18 inv
'y x42 353354 19inv
- x43 494920 inv
*nput sources

val 350clk101000100010001

o va235360clk100010001000100

111

111

i1

va0 57 0 ¢lk2 1 000000111111
- vb0 58 0 clk2 1 000000000000

ve03590clk21 1 1111111111
*analysis requests

8,

Py

N preset (35.0) (36.0) ]
hy tire 120n In 1
. send 37 3§ 3940 41
_}' v~ 3
end
~
[]
~
o
&
N
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